
Don’t Talk Unless I Say So! Securing the
Internet of Things With Default-Off Networking

James Hong∗, Amit Levy∗, Laurynas Riliskis†, and Philip Levis∗
∗Stanford University †harmony.ai

Email: {hongjn,levya,pal}@cs.stanford.edu, laurynas@harmony.ai

Abstract—The Internet of Things (IoT) is changing the way
we interact with everyday objects. “Smart” devices will reduce
energy use, keep our homes safe, and improve our health.
However, as recent attacks have shown, these devices also create
tremendous security vulnerabilities in our computing networks.
Securing all of these devices is a daunting task.

In this paper, we argue that IoT device communications
should be default-off and desired network communications must
be explicitly enabled. Unlike traditional networked applications
or devices like a web browser or PC, IoT applications and
devices serve narrowly defined purposes and do not require
access to all services in the network. Our proposal, Bark, a
policy language and runtime for specifying and enforcing minimal
access permissions in IoT networks, exploits this fact. Bark
phrases access control policies in terms of natural questions
(who, what, where, when, and how) and transforms them into
transparently enforceable rules for IoT application protocols.
Bark can express detailed rules such as “Let the lights see the
luminosity of the bedroom sensor at any time” and “Let a device
at my front door, if I approve it, unlock my smart lock for 30
seconds” in a way that is presentable and explainable to users.

We implement Bark for Wi-Fi/IP and Bluetooth Low Energy
(BLE) networks and evaluate its efficacy on several example
applications and attacks.

Index Terms—Internet of Things, Network security

I. INTRODUCTION

Dropping silicon costs and a proliferation of low-
power, CMOS-based radios have allowed small, low-power
computers to be embedded into a variety of everyday objects,
including light bulbs, cameras, health sensors, HVAC (heating,
ventilation, and air conditioning) systems, and locks. On
the one hand, these “smart” devices reduce our energy use,
keep our homes safe, and improve our health. On the other
hand, they create tremendous security vulnerabilities in our
computing networks, as demonstrated by recent attacks on
HUE light bulbs [1], dolls that spy on children [2], spam
from connected appliances [3], IoT worms ([4], [5]), and
distributed-denial-of-service (DDoS) attacks by the Mirai
botnet of compromised security cameras and DVRs ([6], [7]).

Two factors make these Internet of Things (IoT) devices
notorious weak links in network security; they are easy
to compromise, and their compromise goes undetected. IoT
devices are often low-margin products whose primary goal is
convenience. They often do not follow security best practices
and, even if they do, may not be updatable when best
practices change or bugs are discovered. The attack on Dyn,
for example, was launched from devices with weak default
passwords that could be easily commandeered [6], while the

Miele attack enables an active attacker to read arbitrary files on
a commercial dishwasher [8]. Other common vulnerabilities
include sending passwords and sensitive data in the clear
and allowing connections from arbitrary, unauthenticated
hosts ([2], [9]). To make matters worse, detecting these
attacks is difficult. Following Mark Weiser’s vision of “calm
computing” [10], IoT devices are intended to be unobtrusive
and seamlessly helpful. As a result, owners interact with them
infrequently and in very limited ways—how would you know
if your thermostat was part of a botnet?

Given that IoT devices are so easy to undetectably
compromise, one might conclude that they represent an
undefeatable security threat. However, one property of the
Internet of Things makes them easier to secure and to contain
in the event of compromise. Unlike complex, application-rich
end-user devices such as laptops and tablets, IoT devices have
narrow, application-specific uses. A thermostat, light bulb, or
webcam does not act as a platform for scores of new networked
applications each year. Consequently, their communication
patterns are also stable and predictable. A Nest thermostat
talks only to Nest servers, while only a small number of clients
connect to home webcams.

In this paper, we argue that because of their high-risk but
narrow traffic patterns, communication to IoT devices should
be default-off. By default, network connectivity to an IoT
device is not allowed—a gateway or router blocks it. Desired
communications must be explicitly and finely enabled. For
example, rather than allowing any smart watch to connect to
your smart lock (opening the possibility of a network attack
or compromise), any device wishing to connect to your lock
must be explicitly added to a whitelist.

Making communication default-off has tangible security
benefits. It would have prevented the Dyn attack because
gateways would not have allowed hacked devices to send
arbitrary DNS queries to Dyn servers. Moreover, default-off
would also prevent network attackers from exploiting common
vulnerabilities in devices (e.g., open Telnet and SSH ports) to
spread malware and worms [4].

If communication to IoT devices is off by default, then
how does one specify what communication is allowed? For
example, consider a smart door lock, which you want your
cleaning person to be able to open when they come to clean
your home every other week. Such an access control rule
involves a principal (the person) who might be identified by
a phone IMEI or public key, a location (at your front door),

and a time (every other week at the expected time). At the
same time, rules must be comprehensible and configurable
by end-users so that they may grant and revoke access as
their requirements and the principals involved change. An
IoT access control policy specification language needs to
be expressive, precise, and presentable in terms which non-
technical users can understand.

This paper proposes Bark, a policy specification language
for enabling communication when the network is default-off.
Bark describes how IoT devices may communicate in terms
of natural questions—who, what, where, when and how—
and sentences, consisting of a subject, object, action, and
conditions. These capture underlying structure and behaviors
in the network in user understandable terms.

The main contributions of this paper are:
1) An argument for a default-off communication model for

the IoT to defend devices from network attacks and vice-
versa (§III). We justify default-off by analyzing recent
attacks and vulnerabilities and by measuring the traffic
patterns of a number of popular consumer IoT devices.

2) The Bark specification language (§IV) for whitelisting
access to IoT applications. For example, Bark can
express policies such as “Allow any phone inside
the house to control the home lighting.” and “Allow
residents to control the home lighting from anywhere.”

3) A practical application of two-factor authentication style
schemes to express network access control policies that
require a user-in-the-loop or non-network context. For
example, “Let my friend’s phone unlock my front door
if I approve it via SMS.”

To show Bark’s applicability for commercially available IoT
devices and networks, we demonstrate an enforcement runtime
on a Wi-Fi access point (§V). We also present Bark on Beetle,
a gateway architecture for Bluetooth Low Energy (BLE) [11].
Our prototypes show that Bark can express diverse application
semantics and transparently defend against network threats to
and from the Internet of Things.

II. BACKGROUND

The Internet of Things serves a wide range of uses, includ-
ing home automation, smart cities, cold chain monitoring, and
precision agriculture. This paper focuses on the consumer IoT
consisting of end-user devices in day-to-day life. Such devices
come from a multitude of hardware vendors and are beginning
to see widespread adoption as prices fall to affordable levels.

Consumer IoT devices have a diverse set of functions and
security requirements. They differ from nodes in traditional
wireless sensor networks in that devices are often unique (in
their network) and user interactive. Common device types
include convenience devices such as smart lights [12] and
automatic window blinds [13]; privacy-sensitive devices such
as cameras and activity trackers [14]; and dangerous devices
such as locks [15], ovens [16], insulin-pumps [17], and
HVAC [18]. Users purchase these off-the-shelf devices and
expect them to work out of the box.

Many IoT applications reside in vertically integrated silos;
the embedded device connects to the manufacturer’s cloud
and users configure their devices using the manufacturer’s
app or web management interface. The August smart door
lock [15], for example, attaches to the network through a
single-purpose gateway: either the August app running on a
smart phone or a nearby August hub device. The gateway,
in turn, connects to August servers. Vertical integration has
consequences for securing IoT networks as a whole. While
services like IFTTT [19] allow users to automate actions across
proprietary vendor APIs, users are limited to the security
measures that IoT vendors implement on devices themselves.
Attacks have shown these defenses to be insufficient and
useless once a device has been compromised. Moreover, new
vulnerabilities can be discovered over time since even security
conscious developers make mistakes [20].

Despite a fairly fragmented ecosystem of devices and
gateways [21], most devices use common protocols to
communicate. Many use Wi-Fi to connect to an existing
home access point and communicate using TCP/IP-based web
protocols like HTTP and TLS. Other devices that use low-
power first-hop links such as Bluetooth Low Energy, ZigBee,
or Z-Wave are bridged to the Internet through gateways that
use traditional Wi-Fi and Ethernet links.

Threat Model

We focus on the network (especially gateways) as a common
denominator across a wide range of consumer IoT devices. Our
threat model makes the following assumptions:

1) All parties except for the intended users and services of
an application are untrusted. For instance, if a HVAC
application consists of a thermostat, cloud servers, and
a phone app on the homeowner’s phone, then only
these are trusted to communicate. Arbitrary hosts in the
Internet and in the same network are never trusted.

2) Cloud services that communicate with IoT devices may
be trusted by end-users in many cases, but might become
untrusted. For example, the cloud service may become
compromised or defunct while the device is still usable.
Likewise, users may be concerned about remote access
due to the dangerous or sensitive nature of some devices.

3) Devices may become compromised and be used to
launch network attacks (e.g., DDoS against Dyn [7]).
Although we cannot prevent compromised devices from
exercising their regular communication patterns, we can
prevent devices from communicating in novel ways (e.g.,
as part of the Mirai botnet).

4) Gateways that enforce policies on IoT devices in the
network are trusted. Consequently, Wi-Fi routers with
weak default passwords are out of scope for this paper.

5) Devices, apps, and remote servers communicate exclu-
sively through gateways, and there are no side-channels.

6) Transparently policing network access does not cre-
ate new vulnerabilities in unmodified applications.
Once communication has been allowed, all existing

application-layer authentication, encryption, and in-
tegrity measures implemented by vendors continue to
function.

III. THE CASE FOR DEFAULT-OFF

Enabling unfettered network for IoT devices poses a
large security risk, allowing remote compromise, malicious
firmware upgrades, and DDoS attacks from hacked devices.
Turning off the network completely, however, is not an option
as this would undo all of the benefits of connected operation.
At the same time, when operating correctly, IoT applications
use networks in narrow and fixed ways (§III-B).

We propose a network architecture for the Internet of Things
in which communication is default-off and must be explicitly
enabled. In this model, when an IoT device joins a network,
the gateway blocks all communication to and from the device.
The device owner approves rules on the gateway(s) that (akin
to firewall rules but designed for IoT applications) allow
for connections, messages, and access to application-level
resources. The rules are specific to models of devices and
explainable to end-users.

While such an access control layer in the network cannot
protect devices from physical hacking or tampering, it can
stop endpoints from communicating in new and dangerous
ways. For instance, a smart refrigerator should not under any
circumstance be able to send (spam) emails to arbitrary hosts
in the Internet [3]. Similarly, while the network would allow
an owner to connect their laptop to their webcams, webcams
cannot open new connections or query DNS servers.

A. Three Example Attacks

Many IoT devices on the market today are vulnerable.
Default-off can protect devices from being trivially compro-
mised, block attacks by compromised devices, and mitigate
the harms of overly trusted cloud services. We describe three
categories of attacks that default-off would address.

Directory Traversal, Port Scanning, and IoT Worms:
Device vulnerabilities often result from poor input validation,
inadequate authentication, and other subpar security practices.
For instance, the Hajime worm [4] targets devices with open
Telnet servers and weak passwords. Poor path validation
allows malicious HTTP requests to traverse the file system
of a commercial dishwasher [8]. In the absence of a firewall,
network attackers can discover which devices are present in a
network and scan for common vulnerabilities.

Dyn Attack and Botnets of Things: IoT devices can behave
arbitrarily when compromised. In the Dyn attack, the Mirai
botnet performed DNS lookups from tens of millions of unique
IP addresses, culminating in 1.2Tbps of traffic [7]. Besides
DDoS, compromised IoT devices may be used to send spam,
spread malware, and anonymize illegal activities ([4], [5]).

Over-Permissioned Cloud: IoT devices trust remote servers
to perform tasks such as issuing remote commands on behalf
of (or even oblivious to) users. An attacker who compromises
a vendor’s servers can control devices, spy on users, or

coordinate large scale attacks (such as force a blackout of
connected lights or overload a city’s energy grid). In one such
attack on Avanti Markets’s internal network, hackers managed
to deploy malware onto thousands of kiosks manufactured by
the company [22]. On a lesser scale, anyone with knowledge
of a user’s online login credentials can remotely control the
user’s home devices through existing web management portals.

B. IoT Communication Study

The consumer IoT consists of highly specialized devices,
which follow narrow and stable communication patterns. The
timing of communication matters as regular communication is
event-driven and sparse: e.g., a smart door lock must receive
packets over the network to be locked or unlocked remotely. To
understand normal traffic coming into and out of IoT devices,
we measured IP traffic to and from several devices, including
a Belkin WeMo Mini smart plug [23], TP-Link Kasa light
bulb [24], Nest thermostat [18], and an Amazon Echo [25].

The Belkin WeMo smart plug communicates with two
servers in the cloud (EC2). It sends STUN1 traffic for NAT
traversal as well as TLS traffic for remote control. A device on
the local network, running the WeMo app, communicates with
the WeMo by broadcasting a SSDP2 discovery packet to UDP
port 1900. This triggers a reply from the WeMo, announcing
its presence and services. The device proceeds to initiate
HTTP requests to the WeMo on HTTP paths corresponding
to setting binary state, firmware version, and firmware update.
This exchange is unauthenticated and happens in the clear.

The TP-Link Kasa light bulb also supports discovery
through a similar broadcast to and response from UDP port
9999. The discovering device subsequently connects to TCP
port 9999. While the WeMo uses HTTP, the Kasa uses a
non-standard application layer protocol when communicating
locally. Remote access, by servers in the cloud, to the WeMo
plug and Kasa light bulb can be disabled inside their apps.

We observed the Nest Learning Thermostat communicat-
ing with two servers in the cloud whenever the thermostat
is set remotely. These two TLS connections are to ports 443
and 9543. The latter connection is held open to allow the
Nest cloud server to push commands to the thermostat, which
occurs when the thermostat is modified in the web UI, in the
mobile app, or by the Amazon Echo.

Finally, the Amazon Echo connects to a small number of
servers when spoken to and when the daily report feature is
invoked. The Echo also periodically sends UDP datagrams to
a range of ports used by traceroute on an EC2 server, possibly
to test connectivity. Depending on the “skills” installed,
the Echo makes DNS lookups for www.meethue.com,
opml.radiotime.com, a subdomain of nest.com, and
www.example.* domains.

In order to function correctly, each of these devices requires
the ability to communicate to a very small subset of the
services and endpoints in the local network and Internet.

1Session Traversal Utilities for NAT
2Simple Service Discovery Protocol, for Universal Plug and Play (UPnP)

These communication patterns are stable and expressible by
whitelisting at varying resolutions, depending on whether the
traffic is encrypted or not (i.e., TCP ports for TLS and paths
for HTTP). At the same time, non-standard ports, a range of
domains, and other protocols such as STUN and SSDP add
complexity to the network behaviors.

C. Three Example Applications

Open protocols enable interesting interactions between
devices and applications of all vendors. Bluetooth Low
Energy is one promising example that has seen widespread
commercial adoption. To demonstrate the expressiveness and
precision of Bark’s policies, we present three applications on
Beetle, an open gateway architecture for BLE [11].

Home Lighting: The system consists of embedded devices
such as wireless light bulbs, switches, and ambient sensors,
grouped by the room that they are in. Just like with physical
switches, anyone physically in the home can turn lights
on and off with their phone, without any pre-authorization.
A resident’s phone, however, can turn lights on and off
from anywhere. Finally, a cloud application monitors energy
consumption and automatically saves power by turning off
lights.

BLE handle service

0x0200 RGBW

BLE handle service

0x0200 luminosity

BLE handle service

0x0200 on/off

LED Bulb

Light Sensor

Light Switch

Home
Gateway

Living Room

Cloud Service

Kitchen

Anyone

“Allow access to
lights from inside

the home

“Allow access to
lights from
anywhere

Bedroom

Resident

“Allow access to
lights from
anywhere”

Fig. 1: Lighting application with groups and desired policies.

Cloud Monitoring: Today’s devices trust the cloud with
control at all times. As previously described, an attacker who
can issue commands from a vendor’s trusted server can wreak
havoc in connected homes. We propose an alternative design
where the cloud is semi-trusted. An application running in the
cloud analyzes and archives data from sensors in the network
in a observe-only manner. When the cloud tries to send
commands to actuators, a secondary attestation mechanism
proves that the cloud application acts on behalf of the user.

Smart Door Lock: A Bluetooth lock connects to a gateway
and different users control it with a generic unlocking app
on their phones. The homeowner’s phone has full access to
the lock from anywhere. A child’s phone can see whether
it is locked/unlocked from anywhere but cannot unlock it
unless near the house (they cannot remotely let people in by
accident). A guest’s phone, once (remotely) authorized by the
owner, can operate the lock for the few days of their stay.
The guest can arrive at the home in the middle of the day

Cloud

Semi-trusted
Service Provider

“Allow read access
at any time.”

“Allow write access
when the user allows.”

Thermostat

Home Gateway

Temperature
Sensor

BLE handle service

0x0200 Temperature

BLE handle service

0x0200 Temperature

Fig. 2: Cloud monitoring and remote home control service
with access to IoT devices in the home.

and receive access without requiring any preconfiguration; the
owner authenticates the guest’s phone when they arrive, based
on a text message exchange or a short phone call. Finally, a
pre-authorized house cleaner’s phone can operate the lock in
a certain time window every week.

BLE handle service

0x0200 lock/unlock

Smart Lock

Home Gateway

Homeowner

Guest

“Allow observation and
changes from anywhere”

“Allow access with
the homeowner’s

permission”

Child
“Allow observation

from anywhere”

“Allow changes from
near the home”“Allow access from

9-10AM on
Mondays”

House Cleaner

Fig. 3: Shared door lock with multiple users, each with
different access permissions.

IV. POLICY LANGUAGE FOR DEFAULT-OFF

Bark enables fine-grained access for applications that
require it. Intended to be understandable and mappable to
natural language, Bark has a similar structure, with two levels
of abstraction: types (parts of speech) and rules (sentences).

A. Types: who, what, where, when, how

There are five types in the Bark language, consisting of
answers to the questions who, what, where, when, and how.
These questions represent how humans naturally reason about
and relate agents, actions, and resources in the physical world
to principals and resources in the network.

Who refers to principals (devices and apps), and, indirectly,
to users. A who encapsulates all of the information necessary
to identify a principal to a gateway. For instance, a
who can be a device such as Alice’s Heart Rate
Monitor, which maps to an unique device address (e.g.,
A9:E7:DD:8D:BC:EF), or a Heart Rate App installed
on Alice’s android phone identified by the tuple (Alice’s
phone, app_id). Likewise, local IoT devices connected to
a Wi-Fi AP are identified by MAC address and servers in the
cloud are named by an IP or domain name. First-hop gateways
are responsible for authenticating whos: e.g., using pre-shared
keys for Wi-Fi and association models for BLE.

Just as devices have owners in the physical world, a who can
be registered with a human owner in Bark. For instance, Alice
is the owner of Alice’s Heart Rate Monitor, and the
homeowner is a natural owner of the home lighting system.

For rules with two-factor authentication, a who’s owner can
authorize access to the who’s services and authenticate the who
when it accesses other resources in the network (see §IV-C).

What is a service that is exposed by a who. The format and
granularity of a what matches the naming mechanisms of the
application protocol.

Bark can provide semantically meaningful access control
at a sub-who granularity when services themselves can be
identified. BLE service and characteristic types are named
by UUIDs that correspond to names such as Heart Rate
Service, Body Sensor Location, and Heart Rate
Measurement. On an IP device, services can be coarsely
mapped to transport protocol and ports: e.g., TCP ports 80
(HTTP), 443 (HTTPS), 22 (SSH), 23 (Telnet). Moreover, when
services are unencrypted (or the key is known to the gateway),
HTTP paths and DNS names can be enumerated as strings.

Where is location both in a physical sense and in the
network topology. Specifically, a where, for a who, refers to
the first-hop gateway to which a device is connected.

These first-hop gateways take several forms. Some IoT
devices are mobile in the physical world. Personal devices
such as fitness trackers and watches associate in star-topologies
around phones. Stationary devices such as locks and lights
connect through fixed gateways. Remote clients connect
through the home router and NAT.

How is a command or operation at the granularity of a who’s
application layer protocol. For instance, the HTTP methods
(GET, POST, DELETE, etc.) are the allowed operations for
HTTP, while for DNS an operation can be a query. BLE
supports read, write, and subscribe style transactions
on 16-bit handles. Lastly, if only the transport protocol is
known or parsable, such as for an encrypted TLS connection
or a custom protocol over UDP, then the actions are just
connect or send_datagram/recv_response.

When is a boolean condition such as a time restriction or
the result of evaluating a boolean function.

Bark supports static time restrictions in a Cron-like format.
These time restrictions are straightforward to express and are
common to existing work on IoT access control systems [26].
However, static time restrictions cannot capture semantics such
as “allow access for 3 minutes,” so time also includes a timeout
property. For example, when expressing a rule for a request
with UDP transport, timeout limits for how long responses are
allowed following a request.

To express more complex conditions, Bark allows users to
name oracles to evaluate arbitrary boolean functions. These
are evaluated over who, what, where, how, and the oracle’s
own knowledge and state as inputs. One way to specify an
oracle is to provide a URL which Bark can query at runtime.
However, in §IV-C, we propose three built-in oracle types that
involve a human-in-the-loop and are sufficient to handle many
common IoT patterns.

B. Rules

Humans describe access to resources using sentences. We
say “let Bob use my car for a day” and likewise for IoT

devices such as a light or a lock. Our understanding of
sentences involves a subject, a verb (an action), an object,
and modifiers (e.g., conditions). Like human language, rules
in Bark define permissible network communication in terms
of subjects, objects, actions, and conditions.

A subject is a pair consisting of a who and a where,
capturing the client principal and its location in the network.

An object refers to the resource being accessed and is
described by a 3-tuple: a who, a where, and a what. These
are the serving entity, its location, and the service itself.

An action is a how that defines how the subject is allowed
to interact with the object.

Finally, conditions is an algebraic expression of boolean
whens combined with ∧, ∨, and ¬ that express time
restrictions, complex expressions, and non-network state.

In summary, subjects, objects, and actions are composed
from Bark types, namely whos, wheres, whats, and hows.
As an example, the subject and object for a rule to
allow a light switch to modify a light bulb when both
are connected to a home gateway are (light switch,
home gateway) and (on/off, light bulb, home
gateway), respectively. The action is write, and the
conditions are any time. Fig. 4 generalizes this structure.
Because the underlying mappings that Bark types represent
are protocol and device specific, Bark can express policies for
IoT devices of varying networks and functions.

Allow 𝒑𝟏, at 𝒈𝟏, to perform 𝒂 on

𝑹 of 𝒑𝟐, at 𝒈𝟐, when ⊤ = (𝒄𝟏∧ 𝒄𝟐) ∨ 𝒄𝟑…

Subject{(p1, g1)} Action{a}

Object{(R, p2, g2)} Conditions{(c1∧ c2) ∨ c3…}

who{𝑝1}

who{𝑝2}

where{𝑔1}

where{𝑔2}what{𝑅}

how{𝑎}

when{𝑐1} when{𝑐2} when{𝑐3}

Fig. 4: who, what, where, when, and how types form the
subject, object, action, and conditions and allow for human
interpretation of rules.

C. Two-Factor Authentication Style Oracles

IoT traffic is often sporadic and spurred on by physical
events caused by some user: e.g., unlocking a door or flipping
a switch. In these situations, it is reasonable to have a user
or machine oracle in-the-loop when making access decisions.
We propose three oracles for when to serve as generic second
factors to “authenticate” an action, utilizing concepts that end-
users are already familiar with from other computing contexts.
In English, these conditions are:

User Attestation: “the user attests to the subject’s action.”
When a who attempts to perform an action or access a

resource in the network, we determine that the who is acting
faithfully on the user’s behalf. By default, the user is the
subject who’s owner. One example where this condition can
be applied is in the cloud monitoring application (to ensure

that the cloud cannot modify the HVAC settings at arbitrary
times of day without the user’s knowledge).

Owner Approval: “the object’s owner authorizes an action.”
A device owner wishes to be notified to grant access each

time access is requested (e.g., for their door lock). The owner
of the object’s who receives a prompt (via SMS).

Password Auth: “the user provides pre-shared credentials.”
Embedded IoT devices commonly lack user interfaces for

users to provide credentials for authentication. With this
condition, the user must present a password to the gateway on
behalf of their device, via a form UI. Password authentication
can be used to share IoT devices (similar to using a Wi-Fi
password) and they can be one-time-use and subject specific.

D. Groups and Wildcards

Groups simplify management of entities in the network
and exist in most related access control systems. Policies
sometimes need to address more than just a single subject
or object. The lighting application, for example, needs rules
to grant access to all of the lights in a room. Since several
rules may refer to all of the lights, being able to refer to
them collectively simplifies adding and removing new lights,
as doing so requires no changes to the rules.

Bark allows users to group related principals (who),
gateways (where), and services (what) and address them
collectively. For instance, a group of whos called family
might include Alice, Bob, and Eve’s phones. Similarly, home
gateways (a group of wheres) can include gateways on
different floors of the home.

Policies also often need to specify that anything of the
matching type is allowed. This allows subjects and objects to
match to devices and services whose names are not yet known.
The lighting application, for example, needs to grant anyone
who is physically home access to the lights. Bark supports
such “any” specifications through wildcards. Wildcards enable
patterns such as any who at a where, or a specific who, any-
where.

Some whats also use wildcards internally. For instance,
in the BLE service hierarchy, possible expressions include
“any BLE characteristic under a particular service” or “a
characteristic under any service.” For HTTP and DNS, a
regular expression or simple pattern can express a set of paths
and domains (e.g., /login/* and *.nest.com).

Dynamic Rule Generation (All vs. One): Groups
and wildcards complicate the interpretation of conditions
(especially those that have a user-in-the-loop). When a
condition is satisfied for a rule containing groups or wildcards,
the rule needs to distinguish whether the condition has been
satisfied for every element or only the one that triggered rule
evaluation. For instance, if a rule says “allow any device (∗)
to connect to the front door lock when the homeowner grants
access,” it needs to distinguish whether access is granted to
all devices or only to the specific device that attempted to
connect.

Bark removes this ambiguity with all or one annotations
on groups and wildcards, which indicate how ∗ binds. In
the lock example, approving access for the one guest device
means that the dynamically generated rule grants access to
only that device. In contrast, using all in the light example
gives access to every light.

Explainable Matching and Overlap Resolution: Rule
matching must be understandable, predictable, and intuitive,
even when groups and wildcards can cause overlap. Rules in
Bark can only whitelist access, and Bark handles overlapping
rules by considering their disjunction (logical-∨). A whitelist-
only scheme improves understandability and implies that a
particular communication is permitted if and only if there is at
least one rule that allows it. This contrasts with other systems
that allow priority levels, negation, and chaining of rules.

Although Bark does not inherently prevent overly generic
rules from being written (e.g., “allow everyone access to
everything at any time”), it is easy to log which rules are
in effect for each access so that overly broad rules can be
identified and removed.

E. Managing Liveness with Caching and Leases

Bark policies are intended to be managed centrally, but
enforcement occurs in the data plane, consisting of one or
more of gateways. Liveness requires that applications must
continue to operate even when the network is unreliable or in a
partitioned state; a system that relies completely on the cloud
or has a single point of failure would fail this requirement.
Also, we require that installation of new rules and revocation
of access be verifiable and happen in bounded time.

These properties are obtained with caching and leases.
Gateways replicate rules for their valid lease duration. When
a user installs a new rule, an error is reported if installation
fails or the rule cannot be replicated. In case permissions
change, access is verified continuously, not just at the start of
a connection. Finally, if an expired lease cannot be renewed,
then access reverts to default-off.

Oracles too can become partitioned from the network or
inundated with requests. Results returned by when-oracles in
conditions are cached for a time dictated by the oracle. This
has the added effect of reducing the overhead of reevaluation,
such as when human input is needed.

V. IMPLEMENTATION

We implemented a policy server along with a web-based UI
for the user to list rules and manage allowed communication.
The user can register new devices and gateways, as well as
construct and modify rules using Bark primitives: who, what,
where, when, and how. The user can also attach conditions
such as two-factor authentication and other oracles. Currently,
our server manages two forms of gateways, a Wi-Fi AP
running Linux and a BLE gateway.

A. Wi-Fi Access Point

To demonstrate Bark with today’s devices, we implemented
a daemon in Python for a Wi-Fi AP running Linux. The

daemon intercepts all IP packets to and from devices in the
network by interfacing with netfilter and dnsmasq.

Naming (at the Link Layer): Devices inside the local
network are identified by their MAC address and referenced
with human understandable names. For instance, our Belkin
WeMo smart plug has MAC address 60:38:e0:e7:b1:79
from the vendor and a name given by the user at deployment
time (e.g., bedroom-plug). These MAC addresses map to
names (the who in rule subjects and objects) and also to IP
addresses from leases at the DHCP server.3

Transport Layer: Our runtime supports TCP and UDP
protocols. Connection state is tracked for each TCP flow.
When a host attempts to initiate a connection with a SYN,
the gateway retrieves the who corresponding to the source
and destination addresses, which are then matched with rule
subjects and rule objects. Likewise, the same procedure applies
for UDP. Response packets are allowed for a limited amount of
time, set as a timeout when specifying the rule action. This is
sufficient, for instance, to express the UPnP/SSDP discovery
exchange where a host broadcasts a UDP packet and UPnP
devices unicast responses. Patterns such as DNS query and
response can also be expressed with timeouts.

Application Layer: Although a rule that enables on for TCP
port 80 and UDP port 53 can already whitelist HTTP and
DNS, this is still more permissive than needed. Instead, the
gateway also filters HTTP and DNS traffic at the application
layer. By specifying how and a finer what, Bark can restrict
queries to only a small set of operations on domain names
or specific URIs: e.g., a firmware update URI on the Belkin
WeMo plug, /upnp/event/firmwareupdate1.

B. Bluetooth Low Energy Gateway

Multiple BLE gateways constitute the IoT data plane.
Gateways communicate with the policy server and each other
to build a circuit-switched network of BLE attribute handles.

Conditions
(when oracles)

Beetle

Bark enforcement runtime

OS

BLE

Policy Server

Peripherals

G
at

e
w

ay

TCP

Local Apps Remote Apps

IPC

U
ser In

terface

Fig. 5: Bark system architecture for BLE.

BLE Gateway: BLE devices use the Generic Attribute Profile
(GATT) as their application layer protocol [28]. Transactions
such as read, write, and subscribe/notify in GATT
are performed on attributes in a 16-bit handle space. Each
attribute has a type, given by its UUID. To expose a higher-
level interface to applications, GATT reserves special UUIDs

3While MAC and IP addresses can be spoofed, we consider this to be out
of scope for this paper. Specifically, the Wi-Fi access point is responsible for
authenticating local devices using one or more PSKs. [27] proposes unique
PSKs for each device to prevent spoofing of link-layer addresses.

and adds handles that delimit services, characteristics, and
descriptors in a hierarchy. The protocol is self-describing and
clients can perform discovery when connecting.

Beetle [11] gateways enable multi-hop interactions between
BLE peripherals and applications by circuit switching over
handles. We extend Beetle to use Bark rules when forwarding.

Policy Enforcement: When a packet arrives at a BLE
gateway, the enforcement runtime derives the subject from
the source device and its gateway, object from the destination
device, gateway, and handle. The action is the GATT opcode.

The enforcement runtime decides whether a transaction
should be allowed to traverse the network by querying its rules
for matching subjects, objects, and actions, and then evaluating
conditions (when) to decide access (Fig. 6).

BLE/GATT client

Beetle runtime

BLE/GATT request

Query Bark rules

Send error
response

No

Yes

No

Forward packet

Yes

1. Shared treadmill: I want to
read heart rate at handle 0x0200.

2. Beetle: handle 0x0200 is Alice’s
HRM connected to her phone.

3. Bark: Shared treadmill is allowed
to see heart rate on Alice’s HRM.

4. Bark: Send Alice a SMS for
owner approval.
“Do you authorize shared treadmill
to see your HRM data for 30min?”

5. Beetle: forward request to Alice’s
HRM or to the next-hop gateway.

Rule conditions met?

Found matching
rule?

Fig. 6: Logic to determine whether a request is permitted, in
this case to a BLE heart rate monitor.

VI. EVALUATION

We evaluate the expressiveness of Bark and its practicality
for preventing contemporary IoT attacks. In each figure, un-
derlined identifiers represent principals, gateways, resources,
and groups that are registered beforehand and known to the
policy server and gateways.

A. Wi-Fi/IP: Enabling On for Existing IoT

§III-B characterized traffic from several off-the-shelf IoT
devices: an Amazon Echo [25], a Nest Thermostat [18], a
Belkin WeMo plug [23], and a TP-Link Kasa light bulb [24].
Bark is sufficiently expressive to enable network access for
these devices in the ways that they were intended to be used.

Connecting IoT to the Cloud: IoT devices typcially initiate
a small number of connections to servers in the cloud. Fig. 7
shows a rule for the Nest Thermostat to allow it to connect to
the cloud with two destination ports.

Allow the Nest Thermostat, at home, to connect

https,tls(9543) of Nest Servers at any time

Who{Nest Thermostat}

Who{Group(Nest Servers)}

Subject{(Nest Thermostat, Home WiFi)} Action{TCP-SYN}

How{TCP-SYN}

What{TCP:{443,9543}} When{Cron(* * * * *)}

Object{(TCP:{443,9543}, Group(Nest Servers)[all], *[all])} Conditions{Cron(* * * * *)}

Where{Home WiFi}

Fig. 7: Rule to enable connections from the Nest thermostat
to servers the cloud. Nest servers is a group of domains/IPs
(whos) that the Nest is allowed to contact.

Allow Alice’s Phone, at home, to discover

ssdp of upnp devices, at home, at for 2s

Who{Alice’s Phone}

Who{239.255.255.250}

Subject{(Alice’s Phone, Home WiFi)} Action{send/recv_datagram}

How{send/recv_datagram}

What{UDP:1900} When{timeout(2s)}

Object{(UDP:1900, 239.255.255.250 , Home WiFi)} Conditions{timeout(2s),…}

Where{Home WiFi}

Where{Home WiFi}

Fig. 8: Rule to allow discovery of the WeMo plug. The WeMo
has 2s to reply to the phone’s broadcast discovery messages.

Allow Alice’s Phone, at home, to modify

on/off of WeMo plug, at home, at any time

Who{Alice’s Phone}

Who{WeMo}

Subject{(Alice’s Phone, Home WiFi)} Action{GET/POST}

How{GET/POST}

What{TCP:49153:/upnp/control/basicevent1} When{Cron(* * * * *)}

Object{(TCP:49153:/upnp/…, WeMo, Home WiFi)} Conditions{Cron(* * * * *)}

Where{Home WiFi}

Where{Home WiFi}

Fig. 9: Rule to allow modification to the WeMo’s state. The
WeMo runs a HTTP server on port 49153 and uses the path
/upnp/control/basicevent1 to toggle state.

Supporting Local Communication: Both the Belkin WeMo
smart plug and TP-Link Kasa light bulb allow hosts in the local
network to control actuation. Granting a who (e.g., Alice’s
smartphone) this permission involves one rule to allow for
discovery and one rule to allow for connections. Figs. 8 and 9
show these patterns for the WeMo smart plug over HTTP.

Filtering DNS Queries: In normal use, IoT devices
interact with network services such as DNS in predictable
ways: e.g., to resolve a small set of domains to IPs.
Bark can limit the queries that an IoT device such as
Amazon Echo is allowed to make. Recall that the Echo
queries for www.meethue.com, opml.radiotime.com,
.nest.com, and www.example.. Fig. 10 shows a rule
that would allow a device to use DNS, but prevent denial-of-
service attacks against DNS if the device were to be hacked.
With user-in-the-loop whens, we can also install a second
rule that causes the device owner to be alerted if these traffic
patterns change.

Allow the Echo, at home, to lookup

dns{X} at local resolver at any time

Who{Echo}

Who{10.42.0.1}

Subject{(Echo, Home WiFi)} Action{DNS-Lookup}

How{DNS-Lookup}

What{UDP:53:{X}} When{Cron(* * * * *)}

Object{(UDP:53:{X}, 10.42.0.1, *[all])} Conditions{Cron(* * * * *)}

Where{Home WiFi}

Fig. 10: Rule for an Echo to query for a set, X, of domain
names that have been explicitly whitelisted.

B. Wi-Fi/IP: Three Example Attacks

The three attacks described in §III-A can be prevented with
a default-off communication model and reasonable Bark rules.

Directory Traversal, Port Scanning, and IoT Worms: First,
the directory traversal attack on the Miele dishwasher [8] is
preventable by Bark. Bark sees the dishwasher as a who and

its set of valid HTTP paths as whats. A relative path such as
/../../../../../ would not match a valid what.

More generally, default-off would block port scans at the
gateway since no rule would exist to allow traffic to all
destination ports. Only ports required for the device to function
would be allowed; e.g., a single function IoT device should not
be allowed to listen on Telnet and SSH ports or act as a DNS
resolver (as some devices do [29]). Blocking these ports and
traffic from unauthorized hosts eliminates the most common
attack vectors that are used by IoT worms ([4], [5]) to infect
new devices.

Dyn Attack and Botnets of Things: Bark would prevent IoT
devices from sending DNS lookups or initiating a large number
of connections to an unwhitelisted server for DDoS purposes.
Likewise, IoT devices such as lightbulbs and cameras would
not be allowed by default to send email with SMTP or to
attack other devices in the same network.

Over-Permissioned Cloud: While Bark does not prevent
hackers from gaining control of vendors’ clouds or users from
losing account credentials, Bark rules can impose restrictions
on when remote control from the cloud is allowed or
considered safe. For instance, traffic from remote servers to a
connected oven may only be allowed during times of day when
an adult resident is at home or able to authenticate the access.
In §VI-C, we show how Bark can prevent actuation without
the owner’s knowledge by adding two-factor authentication.

C. BLE: Three Example Applications
We further evaluate the expressiveness, precision, and

presentablility of Bark rules using the three application
examples from §III-C by showing the policies associated with
each one.

Home Lighting: A home lighting system consists of fixed
devices such as light-bulbs, switches, and ambient sensors.
These devices are grouped according to the room that they
are in and their arrangement doesn’t change. To express access
rules in Bark, a user first registers these devices and assigns
each to the appropriate room group. The light-bulbs have an
on/off service and a RGBW service that controls color and
luminosity; recall that BLE uses UUIDs to indicate service
types. The sensors have a service for luminosity.

For each room in the building, the switch requires access to
the on/off service on each light bulb in the room. Each light
bulb requires access to luminosity on the sensor. Figs. 11 and
12 show how to phrase these accesses for a particular room
(bedroom) into Bark rules using subject, object, action, and
conditions.

The system also grants full access to all lights to
anyone physically in the home, to residents, and to a cloud
service. This can be expressed in three rules. The ob-
ject (UUID(on/off), Group(All Lights)[all],
∗[all]), action (read/write), and conditions (any
time) are the same for each. The rule subjects
are (∗[all], Home Gateway) (anyone connected di-
rectly to the home gateway), (Group(Residents’

Allow the bedroom switch to change

on/off of bedroom lights at any time

Who{Bedroom Switch}

Who{Group(Bedroom Lights)}

Subject{(Bedroom Switch, *[all])} Action{BLE/GATT write}

How{BLE/GATT write}

What{UUID(on/off)} When{Cron(* * * * *)}

Object{(UUID(on/off), Group(Bedroom Lights)[all], *[all])} Conditions{Cron(* * * * *)}

Fig. 11: Rule for a switch and a group of lightbulbs.

Allow the bedroom lights to see the

luminosity of bedroom sensor at any time

Who{Bedroom Sensor}

Who{Group(Bedroom Lights)}

Subject{(Group(Bedroom Lights), *[all])} Action{BLE/GATT read}

How{BLE/GATT read}

What{UUID(luminosity)} When{Cron(* * * * *)}

Object{(UUID(luminosity), Bedroom Sensor), *[all])} Conditions{Cron(* * * * *)}

Fig. 12: Rule for a group of lightbulbs and a sensor.

Phones)[all], ∗[all]) (residents anywhere), and
(Cloud Service, ∗[all]) (cloud service anywhere).

Cloud Monitoring: Applications in the cloud provide remote
monitoring and control of IoT devices. We list rules for
a cloud-based HVAC application with access to a smart
thermostat and sensors in the user’s home. The thermostat
and sensors expose temperature services. The cloud
application allows the user to view heating history and make
adjustments remotely in a web interface. The cloud application
can read the temperature service from the sensors and the
thermostat at all times but can only set the temperature when
a SMS message confirms that user has instructed it to do so.
This requires two rules (Figs. 13 and 14).

Allow the cloud monitor to see the

temperature of sensors and thermostat at any time

Who{Group(sensors∪{thermostat})}

Who{CloudMonitor}

Subject{(CloudMonitor, *[all])} Action{BLE/GATT read}

How{BLE/GATT read}

What{UUID(temperature)} When{Cron(* * * * *)}

Object{(UUID(temperature), Group(sensors∪{thermostat})[all]), *[all])} Conditions{Cron(* * * * *)}

Fig. 13: Rule to allow passive monitoring of the HVAC system.

Allow the cloud monitor to change the temperature of

thermostat at any time when Alice allows it to

Who{thermostat}

Who{CloudMonitor}

Subject{(CloudMonitor, *[all])} Action{BLE/GATT write}

How{BLE/GATT write} What{UUID(temperature)}

When{Cron(* * * * *)}

Object{(UUID(temperature), thermostat, *[all])}

Conditions{Cron(* * * * *)ꓥUserAttestation(Alice)[30s]}

When{UserAttestation(Alice)[30s]}

Fig. 14: Rule to allow the changing of the temperature setting.

Smart Lock: Locks require policies that grant access to very
specific groups of users under various contexts. We describe a
generic lock connected to a gateway. A user’s phone connects
to the lock through the gateway.

Users for this system include (but are not limited to) a
homeowner, child, guest, and house cleaner. These users’
phones are added as whos in Bark and each is given a different
set of permissions appropriate to their person. The access rules
that we proposed in §VI-C are expressed in figs. 15 to 18.

Allow homeowner’s phone, from anywhere, to see/change

lock/unlock of front door lock at any time

Who{front door lock}

Who{homeowner’s phone}

Subject{(homeowner’s phone, *[all])} Action{BLE/GATT read/write}

How{BLE/GATT read/write}

What{UUID(lock/unlock)} When{Cron(* * * * *)}

Object{(UUID(lock/unlock), front door lock), *[all])} Conditions{Cron(* * * * *)}

Where{*}

Fig. 15: Rule for a homeowner, who can observe and change
the lock from anywhere at all times.

Allow child’s phone, from anywhere, to see

lock/unlock of front door lock at any time

Who{front door lock}

Who{child’s phone}

Subject{(child’s phone, *[all])} Action{BLE/GATT read}

How{BLE/GATT read}

What{UUID(lock/unlock)} When{Cron(* * * * *)}

Object{(UUID(lock/unlock), front door lock), *[all])} Conditions{Cron(* * * * *)}

Where{*}

Allow child’s phone, from near the home, to change

lock/unlock of front door lock at any time

Who{front door lock}

Who{child’s phone}

Subject{(child’s phone, Group(home gateways)[all]} Action{BLE/GATT write}

How{BLE/GATT write}

What{UUID(lock/unlock)} When{Cron(* * * * *)}

Object{(UUID(lock/unlock), front door lock), *[all])} Conditions{Cron(* * * * *)}

Where{Group(home gateways)}

1

2

Fig. 16: Two rules for the child, who can observe the lock
from anywhere but only unlock when nearby.

Allow anyone, from near the home, to see/change

lock/unlock of front door lock when homeowner allows it

Who{front door lock}

Who{*[one]}

Subject{(*[one], Group(home gateways)[all]} Action{BLE/GATT read/write}

How{BLE/GATT read/write}

What{UUID(lock/unlock)} When{OwnerApproval(homeowner)[30s]}

Object{(UUID(lock/unlock), front door lock), *[all])} Conditions{OwnerApproval(homeowner)[30s]}

Where{Group(home gateways)}

Fig. 17: Rule for the guest, who needs approval from
the homeowner to unlock the door. After the homeowner
authorizes access, a new rule is generated using ∗[one].

Allow house cleaner’s phone, from near the home, to see/change

lock/unlock of front door lock from 9-10am on Mondays

Who{front door lock}

Who{house cleaner’s phone}

Subject{(house cleaner’s phone, Group(home gateways)[all]} Action{BLE/GATT read/write}

How{BLE/GATT read/write}

What{UUID(lock/unlock)} When{Cron(* 9-10 * * MON)}

Object{(UUID(lock/unlock), front door lock), *[all])} Conditions{Cron (* 9-10 * * MON)}

Where{Group(home gateways)}

Fig. 18: Rule for the house cleaner, who has periodic access.

Unlike HomeOS [26], which uses smart locks with
two-factor authentication as an example application, Bark
introduces multiple factors in the network without needing a
custom application. In this way, other applications can directly
benefit without needing to convolute their logic.

D. Performance Considerations

Although optimizing for performance is not the primary
objective of the Bark language, we demonstrate that enforcing
Bark rules does not significantly degrade performance even
on modest hardware (Raspberry Pi 3 in our experiments).
Enforcing Bark can introduce latency in three ways. (1) Rules
that require a user-in-the-loop rules can delay or timeout
traffic. (2) Enforcing Bark adds logic into the network to
inspect packets prior to forwarding. (3) Gateways must query
for and evaluate rules. Factors such as user response time
and unreliability in receiving responses (e.g., SMS) are out
of scope for this paper. We will discuss (2) and (3).

Fig. 19 measures our Wi-Fi prototype with 1,000 rules
installed on the gateway. Since rules whitelist access,
evaluation stops as soon as one is satisfied. Static elements
of rules such as who and where can be matched when
retrieving rules from a local database using SQL, however,
conditions and wildcards require additional evaluation. In
the worst case, several overlapping rules are applicable, but
conditions evaluate to false. Our experiments show that, for
a reasonable number of applicable rules (<10), the additional
latency is unnoticeable to users. Large numbers of nearly
redundant rules (≥30) introduce latency and variance for flows
with more data, but we believe that there is ample room for
improvement with a more efficient firewall implementation
(and better written rules if this becomes the case).

Adding Bark to a multi-hop Beetle network does not
introduce significant performance overhead. Latency and
throughput values (and their variance) for BLE are dominated
by the connection interval at the BLE link layer (Fig. 20).

VII. DISCUSSION

Making communication for the IoT default-off yields
substantial security benefits. In this section, we discuss using
and extending Bark to enable access when communication is
off by default.

A. Interacting With and Writing Bark Rules

Explainability of rules to end-users is required to manage
devices, incorporate new devices, and delegate permissions to
apps and other people. End-users interact with IoT devices
physically and digitally. Bark hides firewall details from
the end-user, presenting rules as high-level subjects, objects,
actions, and conditions that are explainable by device function.

While our measurements of commercial IoT devices demon-
strate that it is possible to map devices’ raw communication
patterns into Bark types, doing so can require knowledge and
skills beyond those of the average user (for example, under-
standing DNS, UPnP, and NAT traversal protocols or vendor-
defined APIs such as /upnp/control/basicevent1).
However, once types such as who, what, how, and when have
been defined once by an expert, they can be copied and used
by end-users in their rules. For instance, when a user adds a
new WeMo smart plug as a who, they name the device and
indicate to the policy server the device model. Device model
then determines the whats and hows that the device supports.

0 3 10 30 100
Number of matching rules that evaluate to false

40

60

80

100

120

C
o
n
n
e
ct

 l
a
te

n
cy

 (
m

s)

0 3 10 30 100
Number of matching rules that evaluate to false

0
100
200
300
400
500
600

Fe
tc

h
 l
a
te

n
cy

 (
m

s)

Fig. 19: The solid lines show connection and request latency
when fetching 1KB (×) and 10KB () of data with the
Bark daemon running and a variable number of matching
rules where conditions are false. Dashed lines are baseline
without the daemon. Latency increases as the number of rules
that are statically matched and fruitlessly evaluated increases,
but remains small for reasonable numbers of matched rules.

BLE RTT=0.45ms (±0.04) RTT=0.56ms (±0.07)

Gateway 1 Gateway 2 Client

Peripheral

TLS TLS

7.5 30 75 200 500 1000
Connection Interval (ms)

0

500

1000

1500

2000

2500

R
e
q
u
e
st

-R
e
sp

o
n
se

La

te
n
cy

 (
m

s)
17 57 156

479

978

1952

51 63 159

482

981

1954

57 65 161

484

983

19571st hop (gateway 1)
2nd hop (gateway 2)
GATT client (TLS)

Fig. 20: End-to-end request-response latency for a read
transaction across two Beetle gateways.

Improving the user experience for composing rules is an
interesting area of future research. A more intelligent interface
might suggest policies based on rule templates, written and
verified by IoT vendors or community experts. Likewise, smart
gateways could learn default rules through traffic analysis or
trust on first use (the device accesses all of the resources it
requires after registration).

B. External Oracles for When

Binding a large number of devices to two-factor authentica-
tion with SMS or passwords will create usability problems for
users. External oracles can maintain security, while replacing
user prompts in most use cases by evaluating conditions on
information from outside of the network. For example, an
oracle can require “an app to be in the foreground on the
homeowner’s phone” before it can access peripherals, bypass
owner approval when “the homeowner is at home,” or allow
the cloud monitoring system to adjust temperature if the
“ambient temperature falls below 26◦C.” Expressing these
conditions with an external oracle means that Bark can act on
complex events, without the need to understand applications
and their data.

C. Extensions to Bark

The goal of extending Bark is to enable new network types
to be supported and new policies to be written. New networks
and gateways will require mappings for who, what, where, and
how that are appropriate to translate information about network

traffic to entities and concepts that users can understand.
Bark’s rule structure (consisting of subject, object, action,
and conditions) remains the same. As mentioned previously,
oracles for when provide a way to improve the expressiveness
of policies while keeping Bark generic.

VIII. RELATED WORK

Smart home applications have given rise to commer-
cial frameworks such as HomeKit [30], Weave [31] and
SmartThings [32]. Such frameworks include built-in systems
to delegate application permissions to users and accounts.
However, these settings alone are insufficient under Bark’s
threat model. Applications in these systems can have
vulnerabilities [33] and they cannot stop attackers from
changing device behavior once a device is compromised.

Existing frameworks ([26], [34], [35]) and libraries [36]
require modification to applications or modules to adapt
existing APIs. HomeOS [26] achieves centralized management
through device-specific drivers. SIFT [35] focuses on detecting
safety violations and policy conflicts for applications expressed
with high-level intents. In contrast, Bark focuses on IoT
communication and interposes in the network. Bark is
complementary to systems like IFTTT [19] and Amazon
Echo [25], targeting the security of rather than the automation
of device APIs.

Access control is a well-studied topic of operating systems,
file systems, and traditional networks. Existing works include
both policy specification and enforcement mechanisms.

ABAC [37] and RBAC [38] are common models for access
control, using attributes and roles, respectively. Bark can be
seen as a subset of ABAC (and awkwardly as RBAC with roles
defined for each device). To use these models in practice, a
policy specification language is needed. Languages such as
XACML [39], while expressive, are not tailored to an IoT
application and network setting.

Taos [40] introduced rule logic and authentication in an OS
setting, and subsequent policy-driven access control systems
adopt similar forms of formal rules and logic. For mobile
OSes, CRePE [41] and Saint [42] propose context-aware
policies and permission assignment, which use conditions like
Bark. HomeOS [26] expresses access control with datalog
rules, and BOSS [43] introduces an authorization service
within their building architecture. Labels in information flow
control ([44], [45]) do not map cleanly to the IoT device
semantics that Bark targets.

Network firewalls and content filters are often configured in
a whitelist or blacklist setting. For IoT devices, blacklisting is
either too permissive or leads to an explosion of rules. Default-
off and whitelisting are not new ideas [46], but traditional
firewall implementations are too coarse and do not exploit
the narrow functionality of IoT devices for configuration and
maintenance. Moreover, complexity is introduced by priorities,
ordering, negation, and chaining of rules [47], degrading the
understandability of the system.

Smart, commercially-obtainable IoT APs [48] automatically
inspect traffic and mitigate attacks. Bark applies similar

techniques of deep packet inspection to IoT traffic but also
gives users visibility into the permissions and rules.

Usability requires that humans are able to comprehend
and conceive policies in the system. End-users are already
familiar with managing apps on phones and online accounts;
Bark provides the technical means to analogously manage
IoT permissions. At a developer level, network behaviors in
Bark are similar to intents in Android ([41], [42]). These
entities must be specified by some human (not necessarily the
end-user) for access control to be semantically meaningful.
Statistical inference [29] has a potential role in making
security for the IoT seamless, but cannot replace all human
configuration and decision making: for instance, when new
permissions need to be granted to a guest.

IX. CONCLUSION

Recent attacks warrant heightened concern over the security
of IoT devices and their networks. Fortunately, the security
of these devices and networks can be greatly improved by
a default-off communication model. This paper proposed
Bark, a new policy language for whitelisting access for
IoT applications when communication is default-off. Bark
enables semantically meaningful access control policies that
are both transparently enforceable in existing networks and
presentable to users (in terms of natural language and physical
applications).

Billions of IoT devices already exist in the wild. Many
will remain deployed and vulnerable for years to come. Bark
demonstrates that better access control policies in the network
can mitigate the threats to and posed by the Internet of Things.

ACKNOWLEDGMENTS

We would like to thank the anonymous reviewers for their
insightful comments and feedback. This work is supported by
Intel/NSF CPS Security grant #1505684, the Secure Internet of
Things Project, the Stanford Data Science Initiative, and gifts
from Google, VMware, Analog Devices, and Qualcomm.

REFERENCES

[1] E. Ronen, A. Shamir, A. O. Weingarten, and C. OFlynn, “IoT Goes
Nuclear: Creating a ZigBee Chain Reaction,” in 2017 IEEE Symposium
on Security and Privacy (SP), May 2017, pp. 195–212.

[2] P. Oltermann, “German parents told to destroy
doll that can spy on children,” Feb. 2016.
[Online]. Available: https://www.theguardian.com/world/2017/feb/17/
german-parents-told-to-destroy-my-friend-cayla-doll-spy-on-children

[3] Proofpoint, “Your Fridge is Full of SPAM: Proof of An IoT-driven
Attack,” 2014. [Online]. Available: https://www.proofpoint.com/us/
threat-insight/post/Your-Fridge-is-Full-of-SPAM

[4] S. Edwards and I. Profetis, “Hajime: Analysis of a decentralized
internet worm for IoT devices,” Oct 2016. [Online]. Available: https:
//security.rapiditynetworks.com/publications/2016-10-16/hajime.pdf

[5] O. Bilodeau and T. Dupuy, “Dissecting Linux/Moose - The Analysis
of a Linux Router-based Worm Hungry for Social Networks,” May
2015. [Online]. Available: https://www.welivesecurity.com/wp-content/
uploads/2015/05/Dissecting-LinuxMoose.pdf

[6] US-CERT, “Alert (TA16-288A): Heightened DDoS Threat Posed
by Mirai and Other Botnets,” 2016. [Online]. Available: https:
//www.us-cert.gov/ncas/alerts/TA16-288A

[7] S. Hilton, “Dyn Analysis Summary Of Friday October
21 Attack,” 2016. [Online]. Available: https://dyn.com/blog/
dyn-analysis-summary-of-friday-october-21-attack/

https://www.theguardian.com/world/2017/feb/17/german-parents-told-to-destroy-my-friend-cayla-doll-spy-on-children
https://www.theguardian.com/world/2017/feb/17/german-parents-told-to-destroy-my-friend-cayla-doll-spy-on-children
https://www.proofpoint.com/us/threat-insight/post/Your-Fridge-is-Full-of-SPAM
https://www.proofpoint.com/us/threat-insight/post/Your-Fridge-is-Full-of-SPAM
https://security.rapiditynetworks.com/publications/2016-10-16/hajime.pdf
https://security.rapiditynetworks.com/publications/2016-10-16/hajime.pdf
https://www.welivesecurity.com/wp-content/uploads/2015/05/Dissecting-LinuxMoose.pdf
https://www.welivesecurity.com/wp-content/uploads/2015/05/Dissecting-LinuxMoose.pdf
https://www.us-cert.gov/ncas/alerts/TA16-288A
https://www.us-cert.gov/ncas/alerts/TA16-288A
https://dyn.com/blog/dyn-analysis-summary-of-friday-october-21-attack/
https://dyn.com/blog/dyn-analysis-summary-of-friday-october-21-attack/

[8] NIST, “National Vulnerability Database - CVE-2017-7240,”
March 2017. [Online]. Available: https://nvd.nist.gov/vuln/detail/
CVE-2017-7240

[9] D. Desai, “IoT devices in the enterprise - A look at the enterprise IoT
device footprint and IoT traffic analysis,” Nov 2016. [Online]. Available:
https://www.zscaler.com/blogs/research/iot-devices-enterprise

[10] M. Weiser and J. S. Brown, “Beyond calculation,” P. J. Denning and
R. M. Metcalfe, Eds. New York, NY, USA: Copernicus, 1997, ch.
The Coming Age of Calm Technolgy, pp. 75–85. [Online]. Available:
http://dl.acm.org/citation.cfm?id=504928.504934

[11] A. A. Levy, J. Hong, L. Riliskis, P. Levis, and K. Winstein,
“Beetle: Flexible Communication for Bluetooth Low Energy,” in
Proceedings of the 14th Annual International Conference on Mobile
Systems, Applications, and Services, ser. MobiSys ’16. New
York, NY, USA: ACM, 2016, pp. 111–122. [Online]. Available:
http://doi.acm.org/10.1145/2906388.2906414

[12] Philips, “Wireless and smart lighting by Philips - Meet Hue,” 2018.
[Online]. Available: https://www2.meethue.com/

[13] MySmartBlinds, “Smartphone Controlled Blinds,” 2016. [Online].
Available: https://www.mysmartblinds.com/

[14] Fitbit, “FitBit: Official Site for Activity Trackers and More,” 2018.
[Online]. Available: https://www.fitbit.com/

[15] August, “August Smart Lock - Your Smart Home Starts at the Door,”
2018. [Online]. Available: https://august.com/

[16] Anova, “Introducing the Anova Precision Oven,” 2016. [Online]. Avail-
able: https://anovaculinary.com/introducing-the-anova-precision-oven/

[17] Cellnovo, “The Cellnovo Diabetes Management System,” 2016.
[Online]. Available: https://www.cellnovo.com/

[18] Nest, “A Nest Thermostat for every home,” 2018. [Online]. Available:
https://nest.com/thermostats/

[19] IFTTT, “IFTTT helps your apps and devices work together,” 2018.
[Online]. Available: https://ifttt.com/

[20] Backdooring the Frontdoor: Hacking a “perfectly
secure” smart lock., 2016. [Online]. Available:
https://media.defcon.org/DEF%20CON%2024/DEF%20CON%2024%
20presentations/DEFCON-24-Jmaxxz-Backdooring-the-Frontdoor.pdf

[21] T. Zachariah, N. Klugman, B. Campbell, J. Adkins, N. Jackson,
and P. Dutta, “The Internet of Things Has a Gateway Problem,”
in Proceedings of the 16th International Workshop on Mobile
Computing Systems and Applications, ser. HotMobile ’15. New
York, NY, USA: ACM, 2015, pp. 27–32. [Online]. Available:
http://doi.acm.org/10.1145/2699343.2699344

[22] B. Krebs, “Self-Service Food Kiosk Vendor Avanti Hacked - Krebs on
Security,” 2017. [Online]. Available: https://krebsonsecurity.com/2017/
07/self-service-food-kiosk-vendor-avanti-hacked/

[23] Belkin, “WeMo Mini Smart Plug,” 2018. [Online]. Available:
http://www.belkin.com/us/p/P-F7C063/

[24] TP-Link, “Smart Wi-Fi LED Bulb with Dimmable Light - LB100,”
2018. [Online]. Available: https://www.tp-link.com/us/products/details/
cat-5609 LB100.html

[25] Amazon, “Echo & Alexa Devices,” 2018. [Online]. Available:
https://www.amazon.com/

[26] C. Dixon, R. Mahajan, S. Agarwal, A. J. Brush, B. Lee,
S. Saroiu, and P. Bahl, “An Operating System for the Home,”
in Proceedings of the 9th USENIX Conference on Networked
Systems Design and Implementation, ser. NSDI’12. Berkeley, CA,
USA: USENIX Association, 2012, pp. 25–25. [Online]. Available:
http://dl.acm.org/citation.cfm?id=2228298.2228332

[27] A. Networks, “Private Pre-Shared Key (PPSK),” 2018. [Online].
Available: https://www3.aerohive.com/solutions/technology/ppsk.html

[28] Bluetooth SIG, “Bluetooth Core Specification 4.2,” 2014.
[29] T. Yu, V. Sekar, S. Seshan, Y. Agarwal, and C. Xu, “Handling a

Trillion (Unfixable) Flaws on a Billion Devices: Rethinking Network
Security for the Internet-of-Things,” in Proceedings of the 14th
ACM Workshop on Hot Topics in Networks, ser. HotNets-XIV. New
York, NY, USA: ACM, 2015, pp. 5:1–5:7. [Online]. Available:
http://doi.acm.org/10.1145/2834050.2834095

[30] Apple, “iOS - Home,” 2018. [Online]. Available: https://www.apple.
com/ios/home/

[31] Nest, “Weave,” 2018. [Online]. Available: https://nest.com/weave/
[32] Samsung, “SmartThings - Add a little smartness to your things,” 2018.

[Online]. Available: https://www.smartthings.com/products
[33] E. Fernandes, J. Jung, and A. Prakash, “Security Analysis of Emerging

Smart Home Applications,” in Proceedings of the 37th IEEE Symposium
on Security and Privacy, May 2016.

[34] S. Lee, J. Choi, J. Kim, B. Cho, S. Lee, H. Kim, and J. Kim, “FACT:
Functionality-centric Access Control System for IoT Programming
Frameworks,” in Proceedings of the 22Nd ACM on Symposium on
Access Control Models and Technologies, ser. SACMAT ’17 Abstracts.
New York, NY, USA: ACM, 2017, pp. 43–54. [Online]. Available:
http://doi.acm.org/10.1145/3078861.3078864

[35] M. C.-J. Liang, B. Karlsson, N. D. Lane, F. Zhao,
J. Zhang, Z. Pan, Z. Li, and Y. Yu, “SIFT: Building an
Internet of Safe Things,” in IPSN (International Conference
on Information Processing in Sensor Networks). ACM, April
2015. [Online]. Available: https://www.microsoft.com/en-us/research/
publication/sift-building-an-internet-of-safe-things/

[36] A. L. M. Neto, A. L. F. Souza, I. Cunha, M. Nogueira, I. O. Nunes,
L. Cotta, N. Gentille, A. A. F. Loureiro, D. F. Aranha, H. K. Patil, and
L. B. Oliveira, “AoT: Authentication and Access Control for the Entire
IoT Device Life-Cycle,” in Proceedings of the 14th ACM Conference
on Embedded Network Sensor Systems CD-ROM, ser. SenSys ’16.
New York, NY, USA: ACM, 2016, pp. 1–15. [Online]. Available:
http://doi.acm.org/10.1145/2994551.2994555

[37] E. Yuan and J. Tong, “Attributed Based Access Control (ABAC)
for Web Services,” in Proceedings of the IEEE International
Conference on Web Services, ser. ICWS ’05. Washington, DC, USA:
IEEE Computer Society, 2005, pp. 561–569. [Online]. Available:
http://dx.doi.org/10.1109/ICWS.2005.25

[38] D. Ferraiolo, J. Cugini, and D. R. Kuhn, “Role-based access control
(RBAC): Features and motivations,” in Proceedings of 11th annual
computer security application conference, 1995, pp. 241–48.

[39] M. Lorch, S. Proctor, R. Lepro, D. Kafura, and S. Shah, “First
Experiences Using XACML for Access Control in Distributed Systems,”
in Proceedings of the 2003 ACM Workshop on XML Security, ser.
XMLSEC ’03. New York, NY, USA: ACM, 2003, pp. 25–37. [Online].
Available: http://doi.acm.org/10.1145/968559.968563

[40] E. Wobber, M. Abadi, M. Burrows, and B. Lampson, “Authentication
in the Taos Operating System,” in Proceedings of the Fourteenth
ACM Symposium on Operating Systems Principles, ser. SOSP ’93.
New York, NY, USA: ACM, 1993, pp. 256–269. [Online]. Available:
http://doi.acm.org/10.1145/168619.168640

[41] M. Conti, B. Crispo, E. Fernandes, and Y. Zhauniarovich, “CRePE:
A System for Enforcing Fine-Grained Context-Related Policies on
Android,” IEEE Transactions on Information Forensics and Security,
vol. 7, no. 5, pp. 1426–1438, Oct 2012.

[42] M. Ongtang, S. McLaughlin, W. Enck, and P. McDaniel, “Semantically
Rich Application-Centric Security in Android,” in Proceedings of the
2009 Annual Computer Security Applications Conference, ser. ACSAC
’09. Washington, DC, USA: IEEE Computer Society, 2009, pp. 340–
349. [Online]. Available: http://dx.doi.org/10.1109/ACSAC.2009.39

[43] S. Dawson-Haggerty, A. Krioukov, J. Taneja, S. Karandikar, G. Fierro,
N. Kitaev, and D. Culler, “BOSS: Building Operating System Services,”
in Presented as part of the 10th USENIX Symposium on Networked
Systems Design and Implementation (NSDI 13). Lombard, IL:
USENIX, 2013, pp. 443–457. [Online]. Available: https://www.usenix.
org/conference/nsdi13/technical-sessions/presentation/dawson-haggerty

[44] N. Zeldovich, S. Boyd-Wickizer, E. Kohler, and D. Mazières,
“Making Information Flow Explicit in HiStar,” in Proceedings of the
7th Symposium on Operating Systems Design and Implementation,
ser. OSDI ’06. Berkeley, CA, USA: USENIX Association, 2006,
pp. 263–278. [Online]. Available: http://dl.acm.org/citation.cfm?id=
1298455.1298481

[45] N. Zeldovich, S. Boyd-Wickizer, and D. Mazières, “Securing Distributed
Systems with Information Flow Control,” in Proceedings of the 5th
USENIX Symposium on Networked Systems Design and Implementation,
ser. NSDI ’08. Berkeley, CA, USA: USENIX Association, 2008.

[46] Off by Default! ACM, November 2005. [Online]. Available:
https://www.microsoft.com/en-us/research/publication/off-by-default/

[47] H. Welte and P. N. Ayuso, “The netfilter.org project.” [Online].
Available: http://www.netfilter.org/

[48] Symantec, “Norton Core Router - Introducing the Future of WiFi,”
2018. [Online]. Available: https://us.norton.com/core

[49] T. Gupta, R. P. Singh, A. Phanishayee, J. Jung, and R. Mahajan, “Bolt:
Data Management for Connected Homes,” in 11th USENIX Symposium
on Networked Systems Design and Implementation (NSDI 14).
Seattle, WA: USENIX Association, Apr 2014, pp. 243–256. [Online].
Available: https://www.usenix.org/conference/nsdi14/technical-sessions/
presentation/gupta

https://nvd.nist.gov/vuln/detail/CVE-2017-7240
https://nvd.nist.gov/vuln/detail/CVE-2017-7240
https://www.zscaler.com/blogs/research/iot-devices-enterprise
http://dl.acm.org/citation.cfm?id=504928.504934
http://doi.acm.org/10.1145/2906388.2906414
https://www2.meethue.com/
https://www.mysmartblinds.com/
https://www.fitbit.com/
https://august.com/
https://anovaculinary.com/introducing-the-anova-precision-oven/
https://www.cellnovo.com/
https://nest.com/thermostats/
https://ifttt.com/
https://media.defcon.org/DEF%20CON%2024/DEF%20CON%2024%20presentations/DEFCON-24-Jmaxxz-Backdooring-the-Frontdoor.pdf
https://media.defcon.org/DEF%20CON%2024/DEF%20CON%2024%20presentations/DEFCON-24-Jmaxxz-Backdooring-the-Frontdoor.pdf
http://doi.acm.org/10.1145/2699343.2699344
https://krebsonsecurity.com/2017/07/self-service-food-kiosk-vendor-avanti-hacked/
https://krebsonsecurity.com/2017/07/self-service-food-kiosk-vendor-avanti-hacked/
http://www.belkin.com/us/p/P-F7C063/
https://www.tp-link.com/us/products/details/cat-5609_LB100.html
https://www.tp-link.com/us/products/details/cat-5609_LB100.html
https://www.amazon.com/
http://dl.acm.org/citation.cfm?id=2228298.2228332
https://www3.aerohive.com/solutions/technology/ppsk.html
http://doi.acm.org/10.1145/2834050.2834095
https://www.apple.com/ios/home/
https://www.apple.com/ios/home/
https://nest.com/weave/
https://www.smartthings.com/products
http://doi.acm.org/10.1145/3078861.3078864
https://www.microsoft.com/en-us/research/publication/sift-building-an-internet-of-safe-things/
https://www.microsoft.com/en-us/research/publication/sift-building-an-internet-of-safe-things/
http://doi.acm.org/10.1145/2994551.2994555
http://dx.doi.org/10.1109/ICWS.2005.25
http://doi.acm.org/10.1145/968559.968563
http://doi.acm.org/10.1145/168619.168640
http://dx.doi.org/10.1109/ACSAC.2009.39
https://www.usenix.org/conference/nsdi13/technical-sessions/presentation/dawson-haggerty
https://www.usenix.org/conference/nsdi13/technical-sessions/presentation/dawson-haggerty
http://dl.acm.org/citation.cfm?id=1298455.1298481
http://dl.acm.org/citation.cfm?id=1298455.1298481
https://www.microsoft.com/en-us/research/publication/off-by-default/
http://www.netfilter.org/
https://us.norton.com/core
https://www.usenix.org/conference/nsdi14/technical-sessions/presentation/gupta
https://www.usenix.org/conference/nsdi14/technical-sessions/presentation/gupta

