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ABSTRACT

The next generation of computing peripherals will be low-
power ubiquitous computing devices such as door locks,
smart watches, and heart rate monitors. Bluetooth Low En-
ergy is a primary protocol for connecting such peripherals
to mobile and gateway devices. Current operating system
support for Bluetooth Low Energy forces peripherals into
vertical application silos. As a result, simple, intuitive ap-
plications such as opening a door with a smart watch or
simultaneously logging and viewing heart rate data are im-
possible. We present Beetle, a new hardware interface that
virtualizes peripherals at the application layer, allowing safe
access by multiple programs without requiring the operating
system to understand hardware functionality, fine-grained
access control to peripheral device resources, and transpar-
ent access to peripherals connected over the network. We de-
scribe a series of novel applications that are impossible with
existing abstractions but simple to implement with Beetle.

1. INTRODUCTION
As a mobile device moves through the world, it encoun-

ters hundreds or thousands of different peripherals it might
interact with. In the space of wireless peripherals, personal
area networks such as Bluetooth Low Energy have become
increasingly common due to low hardware costs and support
for ultra-low power operation: an integrated 32-bit processor
and Bluetooth Low Energy radio can last a year on a coin cell
battery and costs ≈$1. [19] Bluetooth Low Energy is partic-
ularly attractive due to a highly structured application-level
protocol which enables interoperability between peripherals
and applications. Today, there are Bluetooth Low Energy
health trackers [2], medical devices [13], basketballs [24],
door locks [11], fishing lures [17], light bulbs [16], and smart
watches [15].

Current operating system abstractions are not designed to
handle this peripheral proliferation. Traditionally, OS sup-
port for peripherals has come through standard, well-defined
interfaces. For instance, frame buffers for displays, USB hu-
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man interface devices (HIDs) for keyboards and mice, and
LPD for printers. When a peripheral performs a function
not anticipated by the OS (e.g., a logic analyzer), the oper-
ating system exposes the peripheral to an application as a
raw hardware channel. As it has no knowledge of the under-
lying operations or semantics of the interface, the OS cannot
safely multiplex access to the peripheral or enforce a security
policy.

The diversity of available Bluetooth Low Energy peripher-
als makes it impractical for operating systems to anticipate
the function of each new device. Instead, today’s operating
systems impose frustrating constraints on how applications
may access Bluetooth Low Energy peripherals:

• Only a single application (process) can access a pe-
ripheral. This forces vertical software stacks (applica-
tion, cloud, etc.) despite many Bluetooth Low Energy
peripherals ability to interoperate with many applica-
tions. For example, many applications understand how
to read data from a cycling cadence meter, but only
one can do so at a time.

• The operating system does not impose any restrictions
on how an application may use a peripheral. Once the
an application connects to a peripheral, the applica-
tion has complete control it. Allowing an application
to check the battery charge of a glucose monitor also

allows it to read a patient’s blood sugar level.

• Only directly connected Bluetooth Low Energy peers
may communicate with each other. As a result, ap-
plications on different computers cannot communicate
with the same peripheral, and peripherals have no way
of communicating with each other. For example, in or-
der for a wireless switch to control a wireless light,
a gateway they are both directly connected to must
have an application that mediates that particular in-
teraction.

This paper presents Beetle, an operating system ser-
vice that mediates access between applications and mo-
bile peripherals using GATT (Generic Attribute Profile),
the application-level protocol of Bluetooth Low Energy.
While GATT was designed for low-power personal area net-
works, its connection-oriented interface, naming hierarchy,
and transactional semantics give sufficient structure for an
OS to manage and understand application behavior and
properly manage access.

A Beetle enabled operating system can support a periph-
eral’s function without understanding it or knowing what it
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is. Beetle leverages the transactional nature of Bluetooth
Low Energy to provide isolation to multiple applications
concurrently accessing the device. Beetle takes advantage of
Bluetooth Low Energy’s structured protocol to enforce fine-
grained security policies. Beetle is agnostic to the link used
to connect to a peripheral: the peripheral may be connected
directly over Bluetooth, remotely over TCP/IP or even em-
ulated by a local process. Beetle includes a simple policy
language that allows the operating system, the community
or device manufacturers to provide sane default access and
security policies.

We have implemented Beetle for Linux and Android (Sec-
tion 4) and built three end-to-end applications that demon-
strate Beetle’s capabilities (Section 5). Each of these three
applications is impossible with existing operating systems
today:

• A battery monitoring application that collects battery
levels from all nearby peripherals, The monitoring ap-
plication is restricted to reading only battery levels
but other applications can simultaneously have more
permissive access.

• Two applications concurrently read the current heart
rate from a heart-rate monitor. Both applications can
make configuration changes (such as turning notifica-
tions on or off) without impacting the other.

• A door-lock that can be accessed by different types of
users—residents can lock and unlock the door while
observers can only see whether the door is currently
locked. The door-lock connects through a generic home
gateway, rather than one built specifically for the lock.

Our evaluation (Section 5) shows that Beetle’s perfor-
mance is comparable to or better than that of existing op-
erating system Bluetooth Low Energy interfaces, even when
peripherals are accessed from multiple apps concurrently.

Finally, we discuss some of the limitations of Beetle and
how changes to the operating system or extensions to the
Bluetooth Low Energy protocol might help resolve some of
these limitations.

2. BACKGROUND & MOTIVATION
This section provides relevant details on the Bluetooth

Low Energy protocol stack and how operating systems such
as Linux and Android present the stack to applications. The
limitations and restrictions in these APIs motivate require-
ments for a new abstraction.

2.1 Bluetooth Low Energy
Bluetooth Low Energy is an ultra-low power wireless pro-

tocol for single-hop networks at ranges of 1-10 meters. A
Bluetooth Low Energy peripheral’s average power draw can
be low enough (< 10µA) to run for weeks, months or even
years on a small, coin-cell battery.

Every Bluetooth Low Energy device has one of two roles.
A peripheral (such as a heart-rate monitor, door lock or
smart watch) can only connect to a single central1 (such as

1Version 4.2 of the Bluetooth specification allows Periph-
erals to maintain an active connection with more than one
Central at a time. However, it is very rare for actual devices
to do so.
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Figure 1: Bluetooth Low Energy attributes, services, char-
acteristics, and handles.

a mobile phone or laptop) but many peripherals can con-
nect to the same central. Bluetooth Low Energy networks
therefore form star topologies, with peripherals at the spokes
and a central as the hub. Bluetooth Low Energy’s energy ef-
ficiency comes from tight time synchronization between a
central and its peripherals, with the central deciding the
communication schedule.

Bluetooth Low Energy provides an application-level pro-
tocol called GATT (Generic Attribute Profile) on top of a
link-layer connection (called L2CAP). Each side of a GATT
connection exposes data objects through key-type-value tu-
ples called attributes. An attribute’s key, called a handle, is
16 bits long and is local to a connection (like OS-assigned
ports for TCP and UDP connections). The type field is a
128-bit UUID. Using GATT, a central or peripheral can ac-
cess attributes on the other using atomic commands like
READ, WRITE, and NOTIFY.

GATT attributes provides a structured, fixed-depth hi-
erarchical namespace, as shown in Figure 1. A device has
zero or more service attributes. Each service attribute spec-
ifies a collection of related data values called characteristics.
For example a heart rate monitor service provides charac-
teristics on heart rate, location of the monitor, and battery
level, while a lock service has a characteristic for whether the
door is locked or unlocked. Characteristics can be read-only,
write-only, or read-write.

The Bluetooth SIG defines common services and charac-
teristics. For example, the battery service [4] defines a ser-
vice and characteristics that battery powered devices can
expose their battery level through, allowing a battery mon-
itoring application to interoperate with any such device. In
addition, developers can define their own services and char-
acteristics. For example, the Angel Sensor (an activity mon-
itor) [20] defines services for activity monitoring (e.g. step
count, fall detection, etc.) allowing third-party client appli-
cations to interact with features not yet standardized by the
Bluetooth SIG.

2.2 Existing OS support for BLE
As Figure 2 shows, operating systems expose the

connection-oriented nature of GATT directly to applica-
tions. Linux and Windows, for example, provide a socket
over which an application sends and receives binary GATT
messages. Android, following its general object-oriented ar-
chitecture, has an API of remote procedure calls and Java
classes.
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Figure 2: Bluetooth Low Energy communication pattern.
Peripherals can only communicate with a central, and each
peripheral has at most one open connection.

Existing operating system interfaces expose that a periph-
eral can have at most one connection. In Windows, OS X
and Linux, only one application may open a socket to a
peripheral, because in order to open a new socket the oper-
ating system always tries to establish a new connection to
the peripheral. Android and OS X applications first scan for
a peripheral device and connect when a callback from the
system provides them an opaque handle to an object rep-
resenting the device. Because scanning is the only way to
get such a handle, applications cannot obtain one once the
peripheral is connected to another application.

It is sometimes, none-the-less, possible to share a periph-
eral between applications. On OS X and Linux, for example,
a process can explicitly pass a socket to child processes. On
Android, if two applications happen to be scanning for pe-
ripherals simultaneously, they may be able to both obtain
a handle to the same connection. However, in these cases,
existing operating systems do nothing to help isolate appli-
cations’ use of the connection from one another. For exam-
ple, on Linux, each packet sent from the peripheral will go
to one or the other application, but not both.

Moreover, existing operating systems provide all or noth-
ing access to a peripheral. It is not possible, for example,
to allow an application to access some services on a device
but not others or to allow an application to read from but
not write to characteristics. On both Android and iOS, ap-
plications can specify particular services to look for when
scanning for peripherals – e.g. an application may only care
about peripherals that have the Heart Rate service. How-
ever, this is merely used to filter which peripherals an appli-
cation sees while scanning. Once the application establishes
a connection to the peripheral it has full access to all of the
peripherals services and characteristics.

2.3 Application Needs
Bluetooth Low Energy’s communication restrictions and

operating system APIs to peripherals prevent many applica-
tions and use cases that would seem natural and simple. We
present three examples: a heart rate monitor used by multi-
ple applications, monitoring the battery level of all of your

peripherals, and managing a smart lock as well as opening
it with a smart watch.

2.3.1 Battery Monitoring

The battery monitoring application reads the battery
state of all of the peripherals paired with your phone and
displays this information on a single screen. It provides warn-
ings when peripheral batteries are low. This application can
only access battery state information: it can tell that a scale
is low on power, for example, but not read the user’s weight.

This application needs to be able to read the battery sta-
tus of many peripherals without preventing other applica-
tions from using those peripherals. It also needs to be re-
stricted to only be able to read battery state.

2.3.2 Shared Heart Tracker

Wireless heart rate trackers are a common tool for profes-
sional as well as recreational athletes [23]. There is a wide
range of software applications, with different features and in-
terfaces. Strava [21], for example, has excellent recording ca-
pabilities, storing data in the cloud for later analysis. Other
applications, such as Pear [14], provide excellent active in-
terfaces that show the current workout.

Today, it is impossible to run both apps at the same time.
A person must choose between logging data for later analysis
or having a good real-time interface. Applications should be
able to share data and peripherals, such that a user can gain
the benefits of using multiple applications.

2.3.3 Generic Gateways

It is common for Bluetooth Low Energy enabled home
peripherals (door-locks, lights, etc) to use a wall-powered
gateway device to provide cloud connectivity. For example,
the August Connect is a gateway allowing users to monitor
their door lock over the Internet. The Lively smart-watch
ships with a gateway that supports the emergency response
features of the watch with a 3G modem that is too power
consumptive to integrate into the battery powered watch.

Today, external connectivity depends on an application
specific gateway for the particular device. For example, the
August lock cannot connect to the Internet through the
Lively gateway, and vice-versa. An increasing number of
home-automation devices in the home means a similar in-
crease in the number of gateways. Instead, a single gateway
with generic ways of exporting Bluetooth Low Energy ser-
vices of the network and specifying policies could serve all
such devices.

2.4 Requirements
These three example applications motivate three require-

ments for how an operating system should provide access to
peripherals:

1. Sharing: Multiple applications should be able to read,
write and receive notifications from a peripheral. These
applications should be isolated from one another, such
that each one can behave as though it were the only
one connected to the peripheral.

2. Access control: A person should be able to specify
fine-grained policies about which applications can ac-
cess which services and with what permissions.

3. Many-to-many communication: Multiple periph-
erals should be able to interact with one another. A



peripheral should be able to read, write and receive
notifications from other peripherals.

3. DESIGN
Beetle reflects the insight that an operating system can ef-

fectively multiplex and control access to an arbitrary Blue-
tooth Low Energy peripheral—and to each of its individ-
ual attributes—by interposing itself at the layer of GATT
transactions between an application and the device. These
transactions include GET, WRITE, and NOTIFY commands.

By contrast, today’s operating systems expose Bluetooth
peripherals simply by routing a serialized byte-stream of
GATT transactions between the device and a single appli-
cation at a time. The OS doesn’t try to interpret the byte-
stream, even to know where one command stops and another
starts. This prevents multiplexing and per-attribute access
control (or even “read-only” access control).

Traditionally, an OS would provide special-case sup-
port for multiplexing certain kinds of devices at a more
semantically-appropriate layer (e.g., printers via a print-
specific API, or keyboards through an input bus). The as-
sumption underlying this work is that it will not be prac-
tical to build a special-case multiplexing facility for every
new type of Bluetooth Low Energy device—hence the ben-
efit from Beetle’s more general-purpose mechanism.

Beetle represents every Bluetooth Low Energy resource
as a Virtual Device. A virtual device may be backed by a
physical peripheral device, a user-level process running lo-
cally, or a network service. Virtual devices allow Beetle to
enforce fine-grained access control policies, provide many-
to-many communication between devices, and enhance pe-
ripheral functionality in user-space drivers.

3.1 Transaction Layer Interposition
As we described in Section 2, Bluetooth Low Energy de-

vices use the GATT protocol to communicate with applica-
tions. GATT has a well-defined set of commands for read-
ing, modifying, and discovering attributes. Beetle interposes
at this layer, which provides enough semantic information
to share a device between multiple applications while being
generic across all Bluetooth Low Energy devices. Specifi-
cally, there are three command types that Beetle must han-
dle: service discovery, notifications and read/write.

Read/Write.
The most common GATT commands are to read or write

the value of an attribute. Typically these attributes con-
tain a characteristic value (e.g. the current battery level) or
represent an action (e.g. lock or unlock a door). For these
types of attributes, Beetle simply forwards the read or write
command from the application if authorized, changing only
routing information in the request, and forwards back the
reply (Section 3.2).

Notifications.
For some attributes, multiplexing access among applica-

tions calls for a different approach. When a GATT client
wants to receive notifications of changes to a characteristic
from a Bluetooth Low Energy peripheral, it subscribes to
notifications by writing a“1”to the Client Characteristic De-

scriptor—a type of metadata attribute of a characteristic—
and a “0” to unsubscribe. If one application subscribes while

var device1 = find_heart_rate_band ();
var device2 = find_cadence_meter ();

var hrm = device1.find_services(HRM_SRVC)[0];
var cad = device2.find_services(CADENCE_SRVC)[0];

var my_server = beetle.create_server ();

my_server.register_service(hrm);
my_server.register_service(cad);

Figure 3: Beetle lets users“mix and match”BLE peripherals.
Above, example code to combine a heart-rate monitor and
a bicycle cadence meter into one merged virtual device. The
result has all the services and characteristics of the original
devices, but appears like a single device across the Bluetooth
bus—which allows unmodified Bluetooth peripherals to be-
have as if they were speaking with multiple peer devices at
a time, by reading and writing with the merged virtual de-
vice. Beetle automatically renumbers the attributes in the
constituent devices if necessary to avoid collisions and obey
the consecutiveness requirements of the Bluetooth spec. In
this example, the user is including all characteristics from
the constituent devices in the combined device, but it is also
possible to combine devices more selectively.

another unsubscribes for the same notifications, Beetle must
handle the situation appropriately.

Beetle identifies writes to Client Characteristic Descrip-
tor attributes, and maintains an associated subscription list.
Beetle only writes to the Client Characteristic Descriptor
when the first client subscribes or when the list becomes
empty. Similarly, when the value of the underlying attribute
changes and the device sends a NOTIFY command, Beetle
consults the subscription list and forwards the command
only to currently subscribed applications.

Service discovery.
GATT is a self-describing protocol. Connected devices

perform discovery on each other to learn which services and
characteristics each provides and with which handles they
are associated. Beetle performs discovery once for each de-
vice, caches the result, and responds to discovery requests
on behalf of the device. This is important for two reasons.
First, when multiple applications might perform discovery
for the same peripheral, it conserves peripheral device en-
ergy as only the first discovery process is performed. Sec-
ond, properly dealing with notifications as described above
requires Beetle to know the type of each attribute.

3.2 Virtual Devices
Interposing on the transaction layer (Section 3.1) allows

multiple applications to communicate with the same device.
However, it is not sufficient for controlling access to particu-
lar services and characteristics or for enabling many-to-many
communication between peripherals.

Each connection between Bluetooth Low Energy devices
has a GATT server and GATT client on each side of the
connection. When a peripheral device is multiplexed across
multiple applications, there are, logically, multiple GATT
servers—one for each application. Beetle represents logical
GATT servers as Virtual Devices. Each GATT client (be it
an application, network service, or device) has a correspond-
ing virtual device.



A virtual device may be backed by a single peripheral
device, an application, a network service, or a combination
of services from all of the above. It encapsulates state like
notification subscriptions, applicable access control rules and
attribute mappings.

Virtual devices enable many-to-many peripheral commu-
nication by re-exporting multiple device services over the
same connection. For example, a virtual device might ex-
port GATT services from a connected glucose monitor as
well as from a simultaneously connected heart rate monitor.
An insulin pump, connected to that virtual device will see
services from both devices.

Virtual devices also allow Beetle to enforce fine-grained
access control by hiding services or characteristics or block-
ing commands from certain clients. For example, instead of
an application connecting directly to a peripheral that has
both the heart rate service and battery service, Beetle allows
the user to connect the application to a virtual device that
hides the heart rate service, so that only the battery service
is exposed.

A key challenge for enabling these features is to honor
GATT semantics regarding handle ordering and continuity.
For example, all attributes in a GATT service (e.g. char-
acteristics and included sub-services) must be consecutively
numbered. Simply removing a characteristic from the mid-
dle of a service would create a “hole” in the service, violating
the protocol.

Fortunately, the GATT protocol ensures that handles are
constant for a particular connection, but does not require
that handles are preserved between subsequent connections
to the GATT client, or between concurrent connections to
other clients. This allows Beetle to fill “holes” in the handle
space by changing the handles visible to GATT clients.

Beetle keeps a mapping, for each virtual device, between
virtual handles—the handles the client of that virtual device
uses—and real handles on the peripheral or application. In
the common case, handles do not change. However, there are
two important cases where virtual handles are used.

Most Bluetooth Low Energy peripherals only support a
single connection. Therefore, if a peripheral wants to con-
sume services from multiple applications or other periph-
erals, those services must appear to come from the same
GATT server. To support this, Beetle can combine at-
tributes from multiple GATT servers into a single virtual
device. As a result, services will likely appear at handles in
the virtual device that are different from the handles in the
backing peripheral or application.

To implement some access control policies (Section 3.3),
Beetle may hide certain characteristics from a service. To
compensate, Beetle shifts the virtual handles of the remain-
ing attributes in the services to eliminate holes.

In Bluetooth Low Energy, if a device adds, removes
or changes a service, it notifies connected GATT clients
through the “Service Changed Characteristic” with a range
of affected handle identifiers. A device must handle such no-
tifications and adjust to the new settings. Beetle leverages
this feature to model a change in connection status of a
GATT server as a service change to the GATT client. This
is important if a virtual device combines services from mul-
tiple GATT servers and one of them becomes disconnected,
becomes available again, or if the access policy changes to
hide or reveal an attribute in a virtual device.

{
"ServerControler": "this -controller",
"DeviceUUID": "5C:31:3E:42:BF:57",
"ServiceUUID": "*",
"CharacteristicUUID": "*",
"LogicalResourceName": "my -heart -rate -monitor",
"GatewayController": "this -controller",
"AppGroup": "heart -rate -apps",
"AccessMode": "rw",
"TimeRestrictions" : "none",
"Expiration": "never"

}

Figure 4: On Linux, users specify access policies in a JSON
configuration file. Above, an example policy to allows read
and write access to all services and characteristics on a de-
vice with a given UUID connected to this controller from
any app running with effective group heart-rate-apps and
also connected to this controller. The same rule can also be
viewed or specified in the Beetle controller’s web interface.

3.3 Access Control
Beetle exposes an interface to control a client’s access to

devices at a fine grain—allowing no access, read-only access,
or read-write access to each individual attribute.

In some cases, access to a set of attributes, a whole service,
or a whole device may need to be exclusive—only a single
GATT client should be allowed access at a time. Although
it is not common, writing to one attribute may affect the
behavior of other attributes, for example, by changing the
units or sampling rate of a sensor measurement.2

Future devices with these semantics would represent an
exception to Beetle’s assumption that access to a Bluetooth
Low Energy peripheral may safely be multiplexed by merg-
ing read/write commands to each attribute separately. In
these cases, an application should only be able to write to
the attribute in question as long as no other GATT client
can do so. That application may, in turn, re-expose those
services in a device-specific manner.

To support these access control semantics, Beetle deter-
mines the set of rules to apply to a virtual device upon con-
nection. Exclusivity can be enforced for an actual GATT
server (an actual peripheral or application). The restriction
will be carried through even to virtual devices that include
services from the peripheral or application in question. More
generally, Beetle can enforce exclusive access permissions
across any arbitrary grouping of devices, services, and at-
tributes under its control through the use of logical resource
names. This can be useful for management purposes, for in-
stance to enforce that one application uniformly controls all
of the Bluetooth Low Energy light bulbs in a room.

The Beetle design is agnostic to exactly how access control
policies are specified. The Linux implementation of Beetle
uses configuration files (Figure 4), while the Android imple-
mentation prompts the user to specify a policy interactively
when a connection is established (Figure 7). We also built
a web interface to configure access policies on Linux for use
in gateway devices. In both cases, the user specifies policy
rules in terms of four columns: a service or characteristic

2We can’t give an example of such a “problematic” device
yet, because in currently standardized GATT profiles, mea-
surement units are fixed: temperature is in Celsius, power
in watts, etc. But we don’t doubt that such devices may
emerge in the future.



class HeartRateCallback extends BluetoothGattCallback
{

void onServicesDiscovered(BluetoothGatt gatt) {
BluetoothGattCharacteristics hrmChar = gatt.

getService(HRM_SRVC).getCharacteristic(
HRM_CHAR);

gatt.setCharacteristicNotification(hrmChar , true)
;

BluetoothGattDescriptor desc = hrmChar.
getDescriptor(CLIENT_CHAR_CONFIG_UUID);

desc.setValue(BluetoothGattDescriptor.
ENABLE_NOTIFICATION_VALUE);

gatt.writeDescriptor(desc);
}

void onCharacteristicChanged(
BluetoothGattCharacteristic c) {

bpm = c.getIntValue(FORMAT_UINT8 , 1);
textBox.setText(Integer.toString(bpm , 10));

}
}

bleScanner.startScan(new ScanCallback () {
void onScanResult(ScanResult result) {

BluetoothDevice hrm = result.getDevice ();
hrmGatt = hrm.connectGatt(this , false , new

HeartRateCallback(heartRate));
};

});

Figure 5: Example Android code, demonstrating the Beetle
API for finding a device with a heart-rate-monitor service
and subscribing to its stream of measurements. Some unused
parameters and details omitted for brevity.

type, a device address, read and write flags and an exclusive
flag. Both the service/characteristic and the device columns
can be a wild-card, allowing the user to specify rules that
apply for a particular service on all devices (e.g. the battery
service on all devices that expose it) as well as all services
on a particular device. Beetle has a base policy exposing
the GAP service (which includes the device name and other
metadata) as read-only. Additional rules are applied on top
of the base policy and may override it.

4. IMPLEMENTATION
We implemented Beetle for Linux as a user-level process

and for Android as a privileged system app. Linux and An-
droid expose significantly different interfaces to applications
for interacting with Bluetooth Low Energy peripherals. As a
result, our Beetle implementation on each system differs sig-
nificantly as well. This section describes and compares the
two implementations, providing intuition on how difficult it
is to incorporate Beetle into an existing operating system.

4.1 Android
Android applications interact with peripherals through an

Android-specific IPC mechanism called Binder. For each pe-
ripheral type—GPS, camera, and Bluetooth Low Energy—
there is a specially privileged system service that issues com-
mands to the hardware through a C API provided by the
device manufacturer.

In the case of Bluetooth Low Energy, the existing service is
called GattService. The GattService exposes relatively high
level API calls such as startScan, connectGatt and read-

Characteristic. Figure 5 shows an example of an Android
app using this API to connect to a heart rate monitor and
subscribe to notifications from the heart rate characteristic.

There are a large number of existing Android apps that
connect to Bluetooth Low Energy peripherals. Most of them
are closed source and we could not easily modify or recom-
pile them. In order to support unmodified existing applica-
tions our implementation of Beetle for Android is an API
compatible replacement for the GattService.

4.1.1 Scanning for Peripherals

To scan for connectable peripherals, an Android appli-
cation calls startScan passing in scan parameters (e.g.
whether the scan should be low-power or low-latency), fil-
ters (e.g. a device name or services exposed) and a callback
that accepts one scanned device per invocation.

When invoked, Beetle asks the user to approve the scan.
Beetle interprets the passed in filter as a signal that the app
may only require those services. Therefore, the confirmation
prompt to the user allows her the option to pre-approve
access to those services by the application for all connected
devices.

If there are already connected devices matching the fil-
ter Beetle immediately returns them to through the app-
provided callback. In addition, Beetle begins a scan for new
devices. Beetle continues to return matching peripherals
through the callback, both if they are found through sub-
sequent scans or if other apps connect to those peripherals.
This process continues until the app stops the scan explicitly.
Most apps call stopScan immediately prior to connecting to
their device of interest. However, this is not always the case.
The battery monitor application in Section 5.1, for example,
never stops scanning, as it is interested in any peripherals
with the battery service that the phone may connect to in
the future.

4.1.2 Establishing Connections

Once an application has discovered a device it would like
to connect to, it calls connectGatt. Beetle establishes a con-
nection, but does not give the application access to the con-
nection until the user approves that the application may use
that device. This approval can either be implicit or explicit.
Implicit approval occurs when the user had pre-approved ac-
cess to services in a scan. In this case, Beetle creates a virtual
device containing only those pre-approved services and gives
the application access to it. Explicit approval occurs when
Beetle prompts the user asking to approve the connection
and allows the user to restrict access to specific services.

4.1.3 Accessing Characteristics

Once a connection is established, Beetle generates a
unique connection identifier that the application uses for all
commands that access a characteristic. Beetle uses the con-
nection identifier to store access control rules derived from
user prompts during the connection phase.

The Android Bluetooth Low Energy interface does not
expose GATT handles directly to applications, but in-
stead uses characteristic and service “instance identifiers”
generated by the mobile device manufacturers proprietary
drivers 3. As a result, Beetle on Android does not need to
translate the handle specified in an application request to
the real handle on a GATT server.

3In fact, on the Android devices we tested, these seem to
correspond to the underlying handle. However, ordering of
these identifiers is not guaranteed to be meaningful, so ap-
plications must treat them as opaque anyway.



beetle.scan([ HRM_SRVC], function(scan_record) {
if (scan_record.device_name == "MyHRM") {

beetle.connect(scan_record.address , on_connect);
return false;

}
return true;

});

function on_connect(device) {
var srvc = device.find_services(HRM_SRVC)[0];
var hrm = srvc.find_characteristics(HRM_CHAR)[0];
hrm.subscribe(function(val) {

console.log("Heart rate: ", val);
});

}

Figure 6: Example code, demonstrating the same use-case
as Figure 5 – finding and streaming heart-rate service data
– in a Node.js app on Linux.

However, instance identifiers are forgeable (they are sim-
ply 32 bit integers and are generally sequential). Therefore,
when an application requests to, e.g., write a characteris-
tic, Beetle must consult the rules-set to decide whether the
command is permissible.

4.2 Linux
The Linux Bluetooth subsystem [3] manages connections

to Bluetooth Low Energy peripherals inside the kernel and
exports a socket interface to user-level applications. To con-
nect to a particular peripheral, an application creates an
L2CAP socket and connects to the peripherals L2CAP ad-
dress. The kernel handles connection establishment and
when the connect system call returns, the application can
communicate with the peripheral over the socket using
GATT directly.

In our implementation of Beetle for Linux, on the other
hand, all L2CAP sockets are owned by a Beetle daemon. Ap-
plications do not directly initiate connections with periph-
erals, but instead, the user uses a shell interface to the Bee-
tle daemon to establish connections which applications can
then access over UNIX domain sockets. However, once a con-
nection is established, applications interact with peripherals
the same—by sending and receiving GATT commands over
a socket. This design differs from the current Linux Blue-
tooth Low Energy interface but more closely resembles the
interface for basic rate Bluetooth.

An application finds peripherals to communicate with by
navigating the filesystem depicted in Figure 8. Each direc-
tory represents a connected peripheral or virtual device. The
contents of each directory includes the peripherals original
advertising data and a a UNIX domain socket for each ex-
posed service, named by the GATT UUID of the service.
Applications access individual services by connecting to the
respective UNIX domain sockets.

Once connected to a particular service, Linux applications
issue GATT commands to the socket just as though they
were connected over an L2CAP socket. Importantly, because
GATT does not have a length field, applications must open
sockets with the SEQ_PACKET option so only complete packets
are ever returned from the read system call. The Beetle
daemon intercepts GATT commands written to the socket
and forwards them to the appropriate peripheral or virtual
device.

Figure 7: On Android, Beetle asks the user at runtime which
services an app should be able to access if the app is not
covered under any existing policy rules.

MyHRM/ 00:12:55:3D:2C:FF/

00:12:55:3D:2C:FF/

00001800-0000-1000-8000-00805F9B34FB=  # GAP Service

0000180D-0000-1000-8000-00805F9B34FB=  # Heart Rate

0000180F-0000-1000-8000-00805F9B34FB=  # Battery Service

advertising_data

E6:1D:1E:D0:16:0B/

MyBike/ E6:1D:1E:D0:16:0B/

DF:19:D5:77:44:9B/

0000180D-0000-1000-8000-00805F9B34FB=

advertising_data

VirtualFit/ DF:19:D5:77:44:9B/

../MyHRM/00001800...

00001816-0000-1000-8000-00805F9B34FB= ../MyBike/00001800...

00001800-0000-1000-8000-00805F9B34FB=  # GAP Service

00001816-0000-1000-8000-00805F9B34FB=  # Cadence Meter

0000180F-0000-1000-8000-00805F9B34FB=  # Battery Service

advertising_data

Figure 8: On Linux, Beetle represents Bluetooth Low En-
ergy connected devices as a directory tree. Each device is
a subdirectory, with each service as a Unix-domain socket
inside. A user can create a merged virtual device by making
a new directory with symbolic links to existing services.



4.3 GATT over TCP
Both the Linux and Android implementations of Beetle

allow users to connect to GATT services over the LAN or
even the Internet. Beetle on Linux exposes peripherals or
virtual devices by giving each one a particular TCP port
and listening for incoming connections over that port. To
expose a device, the user uses the export_tcp command in
the Beetle shell passing in the local device address and a
TCP port to listen on.

Similarly, to connect to a remote service, the user specifies
the IP and port of the Beetle server. On Linux, the user
uses the connect_tcp command in the shell. Our Android
implementation has a settings activity where users can enter
the remote address.

Once a connection is established, endpoints communicate
using a slight extension to the GATT protocol. First, each
side exchanges its device address with the other by sending
it as the first six bytes. Second, all GATT commands are
prefixed with their length.

Just like with L2CAP sockets, in both implementations
Beetle immediately performs a service discovery for a new
TCP connection. Beetle uses this step to get the same in-
formation obtained during the advertising phase, allowing it
to populate the directory tree and respond to filtered scan
requests, on Linux and Android, respectively.

5. EVALUATION
We evaluated the Beetle design by implementing three ap-

plications: two heart rate apps on an Android phone simul-
taneously accessing the same heart rate monitor, a battery
monitoring app on Android that tracks the battery usage
of all connected Bluetooth Low Energy peripherals, and a
generic gateway device for the home that provides access
control and Internet tunneling to a keyless door-lock. We
also evaluated the performance of Beetle on latency and
throughput metrics.

5.1 Applications

5.1.1 Multi-app Heart Rate Monitor

Fitness applications, such as the Strava Android app [21],
often connect to a user’s Bluetooth Low Energy heart-rate
monitor and record the heart-rate over the course of a work-
out for later analysis. Unfortunately, during the workout it-
self, the heart-rate is not displayed prominently, and might
be difficult for the user to see while, e.g., running. There are
several apps that only display the heart rate or some that
display it on an smart-watch like the Pebble. However, it
is not possible to use Strava to record the heart rate while
simultaneously using another app to view it.

In order to support this functionality on existing operating
systems, one of the two applications would get exclusive ac-
cess to the heart-rate monitor and expose the heart-rate data
through a separate interface (on Android this would most
likely be a Binder IPC service). For example, Strava could
would serve heart-rate data through a specially crafted IPC
service. The Pebble app would have to be designed specif-
ically to use that interface and, importantly, would have a
dependency on the Strava app or else implement a path for
accessing the heart-rate monitor over both interfaces. More-
over, there is no dependency management in the Android
Play store; the user must install the Strava app manually
for the Pebble app to work.

Figure 9: The Strava app (left) records the user’s heart rate
over time for later analysis, while our heart rate app (right)
displays the current heart-rate more prominently. Both apps
shown are running concurrently, connected to the same heart
rate strap on the same phone.

Using Beetle, on the other hand, the desired
functionality—accessing the heart-rate service from
both apps—just works. We were able to run Strava,
unmodified, alongside a simple app we built that just
displays the current heart rate at the same time. Because
Beetle keeps a subscription list for the heart-rate service
data instead of issuing all subscription and unsubscription
commands on behalf of applications, each app will continue
to receive notifications regardless of whether the other has
unsubscribed.

5.1.2 Battery Monitor

Many battery powered Bluetooth Low Energy devices im-
plement the Bluetooth SIG standardized Battery Service.
The battery service notifies a subscribing GATT client of
changes in the battery level. One useful application is a
dashboard that monitors the battery levels of all connected
Bluetooth Low Energy devices. This dashboard could, for
example, notify the user when one of her devices drops be-
low a certain threshold.

Unfortunately, using the interfaces exposed by Linux and
Android today, it is impossible to build such a dashboard
without preventing other applications from using those pe-
ripherals. Since the dashboard would have to own the con-
nection to all connected peripherals, the OS cannot allow
other applications to safely access them at the same time.
Moreover, even if the OS allowed multiple apps to access
the peripheral (after all, it is unlikely for a battery monitor-
ing dashboard and fitness application to interfere with each
other in practice), the battery dashboard would be given
access to all services on all peripherals.
Using our implementation of Beetle for Android, we were

able to easily build such an app. Our dashboard, shown in
Figure 10 monitors the battery level of each connected pe-
ripheral device connected to a phone. If the battery level
drops below 10%, the app alerts the user.

The dashboard is a regular Android app. When launched,
it makes a request to Beetle to scan for available Bluetooth
Low Energy peripherals with the battery service. Beetle in-



Figure 10: The battery monitor app can read the battery
state of all connected Bluetooth Low Energy peripherals. It
does not interfere with other applications accessing the same
peripherals and it does not have access to other services.

fers from the scan request that the app might want access
to the battery service across all devices. It prompts the user
to approve the scan and provides the option to pre-approve
restricted access to the battery service for any peripheral
rather than have to approve each peripheral separately.

Once the user approves the scan request, Beetle first re-
turns currently connected peripherals to the app. It also ini-
tiates an actual Bluetooth Low Energy scan, and continues
to return unconnected peripherals to the app. Our dash-
board app wants to be notified of all peripherals, even those
that might connect in the future, so it does not explicitly
stop the scan. Beetle automatically times out the scan on
the radio after ten seconds, but if new matching peripherals
are connected (e.g. by other apps) Beetle will return them
to the dashboard app as well.

As soon as the dashboard app begins receiving peripherals
in response to its scan request, it requests access to them
from Beetle. If the user pre-approved access to the battery-
service on all peripherals, Beetle does not need to prompt
the user for each one and automatically exposes the battery
service for each requested peripheral to the app. Otherwise,
the user is prompted to approve access for each peripheral.
Once the app gets access to a peripheral it subscribes to the
battery level notification and updates an entry in the UI for
the peripheral appropriately.

5.1.3 Generic Home Gateway

Many Bluetooth Low Energy enabled devices in the home
require a proprietary gateway to make them accessible, e.g.,
over the Internet. Usually this is done to enable connec-
tivity through a more power intensive link, such as WiFi
or LTE. For example, the August smart lock uses the Au-
gust Connect (a wall plug with WiFi and Bluetooth) to al-
low users to monitor the lock remotely. Similarly, the Lively
watch (a medical alert smart-watch) comes with a dedicated
gateway that bridges the Bluetooth Low Energy watch to
Lively servers over the mobile phone network. One of the
primary goals of Beetle is to remove reliance on different
gateways for each device by directly forwarding GATT over

Figure 11: The access control policy web interface, with sep-
arate rules specified regarding residents, guests, and cloud-
monitor for the August door lock.

non-Bluetooth links, like TCP, and providing a generic ac-
cess control interface.

To evaluate our design we used Beetle to bridge an August
lock with Android phones over a wireless network. We deploy
a Beetle enabled Linux-based gateway machine near the lock
that connects to the lock over Bluetooth Low Energy as
well as to the local WiFi network. Users can connect their
Beetle enabled Android phones to the door lock over TCP
using the Android Beetle interface. The gateway exports the
lock’s GATT services over each TCP connection and Beetle
running on the user’s phone, in turn, re-exports the device
to apps running locally—in this case, the August lock app.

Administrators grant access to different users through a
general interface on the gateway. In our gateway, we use
a browser based administrative interface, similar to most
home WiFi routers. However, other common administrative
interfaces, such as configuration files, are possible.

In the case of a door lock, there are three kinds of relevant
access control rules, all of which are supported by Beetle.

1. Residents are people who should have full access to the
lock at any time.

2. Guests should get full access to the lock, but only for
a limited period of time.

3. Monitors are remote services that can monitor the
state of the lock, but should not be able to lock or un-
lock it. For example, a cloud service might alert users
via SMS when a door is unlocked at certain times dur-
ing the day.

5.2 Performance
Performance is not a main goal of Beetle. However, it

is nonetheless important that Beetle does not hurt perfor-
mance in legacy applications and that performance for new
applications is acceptable. In some cases, Beetle presents op-
portunities for better performance over alternative designs.
We evaluated Beetle experimentally and present the results
along with a discussion of ways in which to improve per-
formance. In particular, we were concerned with round-trip
latency in a multi-hop Bluetooth Low Energy network in
addition to throughput and tail latency when multiple ap-
plications access the same peripheral concurrently.

We used three kinds of hardware for all of our experiments:



1. The nrf8001 [18] Bluetooth Low Energy IC connected
to an Arduino Uno [8] application controller. The
nrf8001 is a peripheral-only Bluetooth Low Energy
radio. It communicates with the Arduino over an SPI
bus using a high-level, proprietary protocol.

2. The nrf51822 [19] is a Bluetooth Low Energy enabled,
ARM Cortex-M0 [1] SoC. The nrf51822 can act as
both a peripheral and controller and exposes a rela-
tively low-level Bluetooth Low Energy interface to the
application controller. The ARM Cortex-M0 allowed
us to perform high-resolution timing measurements on
peripheral hardware.

3. A desktop with an Intel i7 quad-core CPU, 16GB
of RAM and on-motherboard Bluetooth Low Energy
hardware which served as our controller.

Bluetooth Low Energy performance is dominated by the
connection interval—the frequency at which two connected
Bluetooth Low Energy devices exchange data. Since the min-
imum connection interval is relatively high (7.5ms) the over-
head of Beetle is negligible. We measured the latency be-
tween a Linux gateway application and a peripheral using
connection intervals between 7.5ms and 960ms, with ran-
dom delays between requests. We sampled 30 requests for
each interval with and without Beetle.

The average latencies were within one standard deviation
of each other. For the lowest connection interval, 7.5ms,
request latency averaged 14.25ms (±3.52ms) with Beetle
and 13.35ms (±2.63ms) without. For a 120ms interval, Bee-
tle averaged 199.2ms (±43ms) versus 206.4ms (±44.4ms).
Overall, latency averaged 1.7 times the connection interval,
both with and without Beetle, with a slightly higher vari-
ance for Beetle (0.45 versus 0.37). We believe most of the
variance is due to the timing of requests relative to the next
connection event.

5.3 Round-trip Latency
An exception is when Beetle is used to bridge two pe-

ripheral devices. Each peripheral device’s connection events
with the central Beetle node occur independently. As a re-
sult, Beetle must queue a request from one peripheral to the
other for the time between the two connection events.

We measured the round-trip latencies for different con-
nection intervals in two scenarios, in both cases using the
Arduino with nrf8001 to service requests. First, we used
the desktop as a client connected directly to the nrf8001,
simulating two end-devices connected directly to each other.
We also measured the round-trip latency of sending requests
from a second peripheral, the nrf51822, with both periph-
erals connected to Beetle on the desktop. In both cases we
performed read requests since the nrf8001 serves those di-
rectly rather than pass them up to the Arduino. Thus we
avoided measuring the cost of the SPI bus communication –
which would have minimized the impact of Beetle.

We found in a single hop connection, it takes between
one and two connection intervals to serve a request. This
is probably due to a combination of the time spent queuing
the request on the client until the next connection event and
processing time on the server to serve the request.

Conversely, the overhead of adding a hop through a Beetle
node is twice the round-trip latency of a single hop when the
connection interval is short, and up to three times when the

connection interval is long. For example, with a connection
interval of 15 ms, the average round-trip time on a single
hop was 26.1 ms, while with Beetle it was 58 ms. With a
connection interval of 960 ms the round trip time with Bee-
tle was 3.7 seconds versus 1.4 seconds without Beetle. Of
course, peripheral-to-peripheral communication is not cur-
rently possible in Bluetooth Low Energy without an inter-
mediate Beetle node.

We believe that most of the increase in latency is due
to poor coordination of each peripheral’s connection events.
Currently, Beetle does nothing to manage connection tim-
ings. However, if the server’s connection events were timed
to occur just before and just after the client’s connection
events, Beetle Beetle could pass the request and response
along immediately, reducing the time spent queuing. Unfor-
tunately, this would require changes to the Bluetooth hard-
ware on the central device to expose timing decisions to
Beetle. We believe this is an interesting avenue for further
research and are working on custom Bluetooth Low Energy
firmware for the nrf51822 that would enable such function-
ality.

5.4 Multi-application Throughput
Bluetooth Low Energy supports a limited number of data

exchanges per connection event (typically 1 to 6). As a re-
sult, multiple apps accessing the same peripheral device will
be unable to, naively, achieve linear increases in throughput.
We evaluated the impact on throughput in the worst case
(where each request from an app must be forwarded to the
peripheral) as well as in cases like cacheable read requests
or notifications, where Beetle can achieve linear throughput
despite hardware restrictions.

In our experiments, we used one nrf8001 as the GATT
server with a connection interval of 25 ms connected to a
desktop running Beetle and between one and 180 client ap-
plications issuing requests in a closed loop. For uncacheable
commands (WRITE commands), overall throughput is con-
stant at 39 queries per second (just under one command per
connection event). Conversely, cacheable reads scaled lin-
early with the number of clients, reaching 7092 queries per
second for 180 clients (just under one request per client per
connection event).

6. RELATED WORK
The Bluetooth Low Energy protocol specification is large

and complex, almost 3000 pages long. We have explained
only a small number of pertinent details on how the protocol
works. For example, we did not discuss its security model
and the implications for Beetle. Curious readers can read
more in several good overviews [10, 7] or the specification
itself [5].

There has been extensive prior work on flexible network
architectures for IP networks and some for Bluetooth Low
Energy. In addition, existing operating systems have added
some provisions to allow more flexibile communication with
Bluetooth Low Energy peripherals in particular classes of
applications. We summarize some of the work in both cases.

REST [9] describes the architectural principals underpin-
ning the World Wide Web. Bluetooth Low Energy adheres
to some of REST’s principals, such the client-server model.
Beetle shares a philosophical motivation with REST but dif-
fers in technical details. Beetle draws on principals of REST,
specifically statelesness and cachable resources, to extend



Bluetooth Low Energy support in the operating system.
Most notably, Beetle adds a layered system on top of Blue-
tooth Low Energy, where clients do not necessarily know if
they are directly connected to the server or through a vir-
tual device. Unlike REST, Beetle does not allow servers to
extend the functionality of clients through code extensions.

Zachariah et al. [25] point out the need to use gateway
devices to connect Bluetooth Low Energy peripherals to the
broader internet. Beetle focuses on compatibility with ex-
isting peripherals as well as on communication between pe-
ripherals. Moreover, their security and access control model
focuses on protecting the gateway while Beetle’s protects
peripheral devices.

Discovery systems like multicast DNS (mDNS) [6] and
Universal Plug and Play (UPnP) [22] allow peers on an IP
network to advertise and discover services (e.g. a printer)
in a decentralized fashion. Clients reach discovered services
directly over IP and use out-of-band means for authentica-
tion or access control (e.g. Kerberos, SSL). Bluetooth Low
Energy peripherals cannot communicate directly and have
no means of multi-client authentication or access control of.
Beetle addresses all three problems (service discovery, many-
to-many communication and access control) by allowing the
controller to act as a mediator.

Android’s Google Fit and iOS’s HealthKit allow appli-
cations to access health and fitness related data, including
from Bluetooth Low Energy connected heart rate monitors
and pedometers. While these systems enable sharing of these
devices in a safe manner, they are restricted to a narrow use
case and they do not allow access to other services on of
the peripherals like the battery level or unsupported sensors
(e.g. body temperature).

Early research in sensor networks and ultra-low power
wireless networks concluded that the connection-oriented
nature of Bluetooth was a poor fit [12]. These networks,
however, focused on multi-hop wireless meshes, which forced
nodes to simultaneously be centrals and peripherals. Per-
sonal area networks, in contrast, fit well with Bluetooth’s
single-hop communication model. The emergence of prox-
imity networks and Bluetooth Low Energy’s dominance of
them suggests that it is worth revisiting this decade-old con-
clusion.

7. LIMITATIONS & FUTURE WORK
While our results our encouraging there are several im-

portant limitations and avenues for future work. First, as
noted in Section 3, Beetle cannot currently handle peripher-
als that do not conform to GATT’s transactional semantics.
In particular a GATT server where the ordering of writes
to one attribute would affect the value read from another
could not be exposed directly to multiple applications. For
such devices, users can give one application exclusive ac-
cess to that attribute and that application could re-expose
the peripheral as a virtual device in an device-specific, safe
manner.

Beetle’s access control design assumes that users can eas-
ily name both peripherals and applications. All peripher-
als have addresses which are (statistically) unique but not
human-readable and human readable names that are likely
to collide. For example, all August locks are named “August
57”. Furthermore, both addresses and names are forgeable,
so it is up to the user to verify that the device they are
connecting to is in fact the one named in their policy. On

the other side of the connection, while Android has a notion
of an application (each application gets a unique user ID),
Linux does not. As a result, our implementation of Beetle on
Linux can enforce access control policies on users running
particular processes, but not on applications.

8. CONCLUSION
Beetle allows the operating system to provide a generic

interface to Bluetooth Low Energy peripherals while satis-
fying our three goals:

1. sharing access to peripherals between multiple appli-
cations

2. fined grained access control, and

3. many-to-many communication between Bluetooth
Low Energy peripherals.

Beetle is able to achieve these goals by leveraging three im-
portant properties of the GATT protocol. First, the GATT
protocol is used by all Bluetooth Low Energy peripherals,
regardless of their particular function, allowing Beetle to
interpose on the communication between apps and periph-
erals without understanding the content of the communica-
tion. Second, the transactional nature of GATT means that
retaining atomicity of individual commands is sufficient to
provide isolation for the majority of peripherals. Finally, the
GATT naming hierarchy of devices, services and characteris-
tics allow peripherals to describe their functionality directly
to applications.

We demonstrated the feasibility of Beetle by building pro-
totype implementations for Android and Linux. Using these
prototypes, we built three applications that are simple, but
nonetheless impossible today. We also evaluated the perfor-
mance of Beetle and demonstrated that virtualizing Blue-
tooth Low Energy connections at the application layer does
not significantly limit performance.

By transforming Bluetooth Low Energy from a star topol-
ogy to one in which peripherals can communicate, Beetle
elevates it from a link-layer to a network-layer abstraction,
with controllers routing data at the application level. This
forwarding model resembles virtual circuits, giving a router
explicit knowledge of each flow that might pass through it.
This is a good thing: the security implications of Internet-
style default-on connectivity could have disastrous implica-
tions to personal devices that are continually coming into
range of potential new attackers. Beetle’s properties suggest
some ways in which the constraints and technologies of “In-
ternet of Things” may lead it to differ from the Internet of
today.
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