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Abstract

How to frame (or crop) a photo often depends on the image
subject and its context; e.g., a human portrait. Recent works
have defined the subject-aware image cropping task as a nu-
anced and practical version of image cropping. We propose a
weakly-supervised approach (GenCrop) to learn what makes
a high-quality, subject-aware crop from professional stock
images. Unlike supervised prior work, GenCrop requires no
new manual annotations beyond the existing stock image col-
lection. The key challenge in learning from this data, how-
ever, is that the images are already cropped and we do not
know what regions were removed. Our insight is to combine
a library of stock images with a modern, pre-trained text-
to-image diffusion model. The stock image collection pro-
vides diversity, and its images serve as pseudo-labels for a
good crop. The text-image diffusion model is used to out-
paint (i.e., outward inpainting) realistic uncropped images.
Using this procedure, we are able to automatically generate
a large dataset of cropped-uncropped training pairs to train a
cropping model. Despite being weakly-supervised, GenCrop
is competitive with state-of-the-art supervised methods and
significantly better than comparable weakly-supervised base-
lines on quantitative and qualitative evaluation metrics.

1 Introduction
Framing a photo is compositional skill that professional pho-
tographers hone with years of experience, and cropping is
a key way to adjust framing or experiment with alterna-
tive compositions after capture. Framing and cropping de-
cide what elements of a scene to include or exclude from
the image, and how to frame or crop an image is influ-
enced by the subject that one wishes to portray. Subject-
aware cropping takes a notion of a subject in addition to
pixels and has been studied in recent work on data-driven
approaches (Yang et al. 2023) and in the context of human-
centric images (Zhang et al. 2022). High-quality solutions
to this problem are based on supervised learning, from large
datasets of manual annotations created specifically for crop-
ping (Zeng et al. 2019; Wei et al. 2018; Yang et al. 2023).

We explore an alternative approach to the subject-aware
cropping problem that is only weakly-supervised. We ob-
serve that millions of professional images are easily acces-
sible online in the form of stock image collections and that
these collections cover a wide range of subject-matter that
people want to capture — e.g., portraits of people. We then
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Figure 1: Generated training pairs. We outpaint profes-
sional images (left) to obtain plausible, uncropped input im-
ages (right). The original image is treated as a pseudo-label
crop (red). Since the images come from stock image collec-
tions, each pseudo-label is an acceptable, professional crop.

ask, to crop better portraits, can one seek out a relevant set
of professional portraits from these collections and teach a
model to replicate that distribution? The key challenge is
that, although every professional image provides an expert
label (i.e., a good crop), the original uncropped photo is un-
known and cannot be recovered from the crop. Unlike typ-
ical weakly-supervised computer vision tasks where input
images are plentiful but labels are scarce and/or unreliable,
in our setting this assumption is reversed.

Our proposed method, GenCrop, addresses this challenge
by combining a readily available dataset of stock images
with powerful, pre-trained image generation models to syn-
thesize the required inputs. Specifically, we use text-to-
image diffusion to “out-paint” (i.e., outward pixel gener-
ate or outward inpaint) stock images and generate plausible
uncropped-and-cropped pairs (Fig. 1). By scaling this auto-
matic process, we can generate a large and diverse set of
images to train our subject-aware cropping model. The key
advantage of GenCrop is that it is weakly-supervised, re-
quiring no new manual crop or scoring annotations beyond
access to the original professional image collection.

To demonstrate the effectiveness of GenCrop, we evalu-
ate it on the human-centric (portrait) and the subject-aware
cropping tasks proposed by (Zhang et al. 2022) and (Yang
et al. 2023). We show that GenCrop yields competitive
results against fully supervised approaches (Zhang et al.



2022) on the existing datasets (Fang et al. 2014; Chen et al.
2017a; Yang et al. 2023) (under quantitative metrics such as
Intersection-over-Union and boundary displacement (Zhang
et al. 2022)), while being superior to the best weakly/unsu-
pervised method (Chen et al. 2017b). We also evaluate Gen-
Crop on additional subject categories such as cats, dogs, etc.
to test the generalization of our approach beyond just hu-
mans. On qualitative evaluation, GenCrop is comparable to
or better than supervised prior work on the rate of cropping
errors, while prior weakly-supervised/unsupervised base-
lines fall substantially short.

Lastly, we conduct additional analysis and ablations to
assess the effectiveness and limitations of learning to crop
from our generated data. The code for our data generation
pipeline and cropping models is publicly available.

2 Background and Related Work
Prior works on image cropping have proposed a broad
set of methods, which include optimizing for atten-
tion/saliency (Chen et al. 2016; Fang et al. 2014), heuris-
tics (Zhang et al. 2005), and user-interaction (Santella et al.
2006). Recently, end-to-end data-driven approaches have
shown strong performance on benchmarks. GenCrop fol-
lows this paradigm and we compare to that body of work.

Data-driven approaches for cropping. Most recent
works (Hong et al. 2021; Zeng et al. 2019; Zhang et al.
2022; Jia et al. 2022; Pan et al. 2021; Wang et al. 2023) uti-
lize direct supervision and require large amounts of human-
annotated crops and crop scores to train. GAIC (Zeng et al.
2019), CPC (Wei et al. 2018), and FCDB (Chen et al. 2017a)
are commonly used datasets. These datasets are expensive
to annotate (CPC and GAIC have 259K and 106K crops;
on average 24 and 86 crops per image) and the quality of
these images and crowd-sourced crops can vary (see supple-
mental §B.3). Since these datasets are not specific to a sub-
ject type (e.g., human), prior work on human-centric crop-
ping (Zhang et al. 2022) is limited by the number of im-
ages available for training and evaluation. Only 1.1K, 339,
176, and 39 of the images in CPC, GAICD, FCDB and
FLMS (Fang et al. 2014) are human-centric (Zhang et al.
2022); the human-centric evaluation sets consist of only
50 images from GAICD and 215 from FLMS and FCDB
combined. SACD (Yang et al. 2023) is a recent dataset for
subject-aware cropping that does not focus on a particular
subject type but contains 24K+ labels and 5.2 million rank-
ing pairs generated using their annotation procedure. Our
approach differs in that we generate a dataset to provide
weak-supervision for a given subject type. We focus on the
subject-aware task because cropping better portraits of peo-
ple is a subtle and important use case, and choosing a subject
type (e.g., people) is a simple way to select the most relevant
portion of a stock image dataset for the task. Extra experi-
ments in §5.1 and §5.2 suggest that subject-type can be a
general object category and that GenCrop can generalize to
subject types not targeted during training.

GenCrop is comparable to VFN (Chen et al. 2017b),
which is also weakly-supervised by high-quality profes-
sional images; VFN generates likely bad crops from within
these good images to form ranking pairs. We compare

against VFN trained on our stock images and find that Gen-
Crop performs better, showing that our generated dataset is
richer than the ranking pairs mined by VFN.

Other works have also experimented with weak or ex-
ternal supervision in addition to the fully-supervised data.
Despite being human-centric, HCIC (Zhang et al. 2022)
trains on all of the images and annotations in CPC and
GAICD. CACNet (Hong et al. 2021) utilizes a second com-
position classification dataset (Lee et al. 2018). (Wang et al.
2023) trains on the test images, without labels. GenCrop is
only weakly-supervised — we only train on the uncropped,
pseudo-labeled data generated by our pipeline.

(Zhong et al. 2021) uses outpainting to enlarge the set of
possible crops at test time but utilizes GAICD for training.

Models for data-driven approaches can be categorized by
which variant of the cropping task they attempt to solve: (1)
learning to rank a set of crop candidates (Zhang et al. 2022;
Zeng et al. 2019; Wei et al. 2018; Pan et al. 2021) and (2)
regressing crops directly (Hong et al. 2021; Jia et al. 2022).
GenCrop directly regresses crops and we use an architecture
inspired by CACNet (Hong et al. 2021). Like other regres-
sion approaches, we quantitatively evaluate using the stan-
dard Intersection-over-Union (IoU) and boundary displace-
ment (Disp) metrics against human-annotated crops. We do
not focus on ranking metrics (e.g., SRCC) but provide those
results in supplemental §A.9.

Dataset generation using text-image diffusion.
(Sarıyıldız et al. 2023; Tian et al. 2023) use Stable Dif-
fusion (SD) (Rombach et al. 2022) to synthesize data for
ImageNet (Deng et al. 2009) and other generic image
classification tasks. InstructPix2Pix (Brooks, Holynski, and
Efros 2023) generates a dataset for text-driven image edits.
GenCrop also leverages the image generation capabilities of
SD but to transform stock images into labels for cropping.
Techniques to generate data for other spatial tasks (e.g.,
object grounding or placement) are interesting future work.

Other works have studied the outpainting task di-
rectly (Teterwak et al. 2019; Yang et al. 2019; Cheng
et al. 2022). Recently, outpainting using text-image diffu-
sion (Ramesh et al. 2022; Adobe 2023) has been shown to
be a powerful interactive tool in the hands of artists. Future
work on automatic outpainting would benefit the quality of
the training data produced by our pipeline.

Pre-trained models used by GenCrop. In addition to
Stable Diffusion (SD) (Rombach et al. 2022), we use other
off-the-shelf models in our pipeline. These include an image
captioner (Li et al. 2023) and an instance segmenter (Ul-
tralytics 2023). Text-conditioning, even with noisy captions,
helps SD produce more plausible outpainted images. The in-
stance segmenter is used to detect and segment the subject
as an input to our model. While the YOLOv8 model that we
use is limited to the COCO (Lin et al. 2014) object classes,
we anticipate that advances in models such as SAM (Kirillov
et al. 2023) will enable arbitrary subject classes.

3 Methods
Given an image, GenCrop generates possible crop rectangles
that lead to aesthetically pleasing compositions. Our method
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Figure 2: Dataset generation pipeline. Stages are marked (a-f). Refer to §3.1 for detailed explanation. We start with a stock
image (a) and estimate its text caption (b). To determine the region to be outpainted, we sample a blank canvas to outpaint around
the image (c). Outpainting is done using a text-to-image inpainting model (Rombach et al. 2022) and results in a square image
(d). Afterwards, we apply automated filters to remove poorly generated images (e). Later, when training a cropping model, we
sample an enclosing view (f) in the uncropped image from a common aspect (e.g., 3 : 4) so that the model generalizes beyond
square images. The region containing the original image is treated as a pseudo-label when training a cropping model.

(a) Additional outpainted subject

(b) Tiled, composite, or framed images

Figure 3: Common outpainting failure cases. The original
image is marked with a red rectangle. (a) An extra person
was synthesized in the outpainted region. This can alter the
ideal composition of the scene. (b) The outpainted region is
a grid or composite of multiple images (col 1, 2), frames the
original image (col 3), or has a border (col 4). These artificial
edges can bias the model towards detecting sharp borders.

is “subject-aware”. We condition the cropper on both the in-
put image and an estimated pixel mask denoting the location
of a given subject. The core of our approach is to generate a
dataset of cropped and uncropped image training pairs using
a pre-trained generative model (§3.1). We then use the gen-
erated data to train a subject-aware cropping model (§3.2).

3.1 Dataset Generation with Image Outpainting
Our first goal is to construct a dataset of image pairs, one
casually-framed and one expertly-framed, to supervise our
cropping model. Because our dataset generation is auto-
mated, we synthesize images according to a subject type
(i.e., cropping portraits like professional portraits). We filter
the stock image collection (Unsplash 2023) to a set of rele-
vant images. These photos, by nature of their inclusion in the
stock photo collection, have been vetted for good composi-
tion and high aesthetic quality by human experts. We then
use a pre-trained diffusion model to hallucinate plausible
out-of-frame content for each image. Fig. 2 illustrates our
pipeline and a generated cropped-uncropped training pair.

For each stock image, we apply the following operations:
1. Pre-processing and filtering. We filter for images that in-

clude an identifiable subject (e.g., person in portraiture;
Fig. 2a). This is done with metadata tags first and then
with an object detector (Ultralytics 2023). We also dis-
card the image if it contains too many possible subjects
(e.g., > 5). For simplicity, if there are multiple possible
subjects, we select the largest one as the dominant sub-
ject (by bounding box area).

2. Estimating image captions. We use an automatic image
captioning algorithm (Li et al. 2023) to estimate a text-
conditioning string: s (Fig. 2b). The purpose of this text
conditioning is to constrain the content generated by the
diffusion model. Omitting it can lead to unrelated con-
texts in the outpainting; see supplemental Fig. 6.

3. Outpainting. We randomly downscale the image with
bilinear interpolation and paste it into a surrounding
512×512 canvas to obtain an image x (Fig. 2c). We also
compute a binary mask m with 1’s in the area corre-
sponding to valid pixels. We then pass x and m to a pre-
trained diffusion inpainting model (Rombach et al. 2022)
to obtain a 512×512 outpainted image (Fig. 2d):

x′ := StableDiffusionInpaint(x,m, s)

Because we wish to learn to crop images of different as-
pect ratios, not just the 1:1 square images produced by
Stable Diffusion, we sample a rectangular crop xo from
inside x′ that also encloses the original image. xo is cho-
sen to have a common aspect ratio (e.g., 2:3, 4:5, etc.).
We refer to the coordinates of the original image region
in xo as y ∈ R4 and treat this as a crop pseudo-label. We
also run an object segmenter (Ultralytics 2023) to update
the subject’s bounding box (since a cropped subject may
grow in size due to outpainting) and to produce the sub-
ject mask, mo, needed for GenCrop. Together, (xo,mo)
and y form a weakly-labeled training pair. (Fig. 2f).

4. Outpainting quality filtering. Not all outpainting attempts
lead to plausible images (see Fig. 3); we discard the
most striking failure cases (Fig. 2e) using two automatic
heuristics described later in this section.

We repeat the pipeline multiple times per image to sample
additional variations for data amplification (4× to 8× de-
pending on the initial number of stock images available).
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Figure 4: Cropping model architecture. Our design is inspired by CACNet (Hong et al. 2021): details in §3.2 and supplemental
§C.2. We extract CNN features from the input image, xo, and subject mask, mo. These features are used by a transformer-
encoder (Vaswani et al. 2023) to generate crop proposals at a grid of anchor points. The crop proposal at each anchor point
contained in the subject region is weighted by a second branch. A softmax-weighted sum computes the final crop prediction ŷ.

Filtering the uncropped images. We discard two promi-
nent classes of images where Stable Diffusion (SD) (Rom-
bach et al. 2022) fails to outpaint a reasonable scene.
1. Images with a new subject (e.g., another person) in the

outpainted region (Fig. 3a). This can happen if the subject
or if the original region (in xo) is small.

2. Images depicting a grid of images or scenes that “frame”
the original image (Fig. 3b). These images leak informa-
tion about the crop label.

These images account for about 20% of the outpainted por-
trait images. To suppress images of category (1), we run a
heuristic that compares the size of the largest object of the
subject class (e.g., person) in the outpainted region with the
size of the originally identified subject. If another object has
an area larger than 1

4 of the subject’s area, the image is dis-
carded. To address category (2), we separately train a binary
classifier, Dquality, to identify grid, composite, and bordered
images. Dquality is a standard ResNet-50 (He et al. 2016)
that we trained on 3K generated images (of which 15% are
‘bad’) and it identifies approximately 90% of the images
with such issues (details in supplemental §C.1). GenCrop
can still train without these filters, but we show via ablations
in supplemental §A.4 that removing these problematic data
boosts results slightly (up to 0.03 IoU and 0.008 Disp).

Images produced by current text-image diffusion models
often have artifacts (e.g., in fine details such as faces; zoom
into Fig. 1-right). With Stable Diffusion inpainting, these ar-
tifacts appear even in the non-inpainted regions; we do not
correct them and find that they do not impede training of the
cropping model. Blending the original (cropped) image into
the outpainted synthetic image would reduce artifacts, but it
would also leak information about the crop pseudo-label due
to the absence of artifacts (Wang et al. 2020).

3.2 Cropping Model and Training
We describe the cropping model used in our experiments.

Model inputs and outputs. The input is an uncropped im-
age xo and subject mask mo, which contain the box specified
by the crop pseudo-label y. We scale and zero pad xo and mo

to 256×256, since our model is not fully convolutional. The
output is a vector ŷ ∈ R4.

Architecture. At a high level, our model design is inspired
by CACNet (Hong et al. 2021), sharing a similar three-part
structure of a multi-scale CNN feature extractor and two
branches: one for regressing crops at a grid of anchor points
(‘cropping branch’) and the other for producing blending
weights for the crops (‘composition branch’).

The feature extractor is a ResNet-50 that accepts four-
channel inputs: the RGB image and the binary subject mask.
From the 256×256 inputs, we obtain a 16×16 grid of fea-
tures. Our cropping branch is a small 2-layer transformer-
encoder (Vaswani et al. 2023) that can easily learn global
interactions between distant parts of the image. Each of the
16×16 transformer inputs and outputs corresponds to an an-
chor point, and each anchor point produces one crop pro-
posal: ŷij ∈ R4 at the ij’th anchor point. In our additional
experiments (§5.3), we extend this component to inject con-
ditional control into our cropping model by replacing the
transformer-encoder with a transformer-decoder (Vaswani
et al. 2023). In our composition branch, we predict blend-
ing weights for the crop proposals. Since we want to pri-
oritize the subject, we use zero weights for proposals by
anchor points that lie outside the subject’s bounding box.
For anchor points within the subject bounding box, we
use RoIAlign (He et al. 2017) and RoDAlign (Zeng et al.
2019) layers to pool the spatial CNN features from inside
and outside of a crop proposal, similar to prior cropping
work (Zhang et al. 2022). A feed-forward network uses these
features to produce a weight: wij for the ij’th proposal. The
final crop prediction, ŷ, is the softmax-weighted sum:

ŷ =

16∑
i=1

16∑
j=1

Softmax(w)ijŷij

Fig. 4 shows our architecture and supplemental §C.2 pro-
vides implementation details and comparison to CACNet.

Losses. We train using a regression loss: the L1 error be-
tween ŷ and y. We also add two additional losses.
1. Per-anchor regression loss. We apply L1 loss between

the predicted crop at each anchor point and y, with a
low loss weight ( 1

10 ). This reduces variance by encourag-
ing all anchors to make predictions similar to the ground
truth (i.e., reasonably shaped boxes).



Train Val Test
Subject # imgs # outpainted # imgs # imgs # labeled

Human 52.0K 188K (3.6×) 11.0K 10.3K 1000
Cat 6.7K 18K (2.7×) 838 804 204
Dog 8.9K 24K (2.7×) 1.1K 1.2K 200
Bird 9.0K 25K (2.8×) 1.3K 1.8K 201
Horse 2.2K 12K (5.3×) 221 412 200
Car 9.2K 23K (2.5×) 891 811 100

Table 1: Dataset statistics and splits for each subject class.
# outpainted is the number of synthetic training images that
pass the automatic quality filters in §3.1. # labeled is the size
of our hand-labeled evaluation subset (of the test split).

2. Subject boundary loss. A common error that we notice
when training on the aforementioned losses is that the
model produces crops that cut subjects at their extrem-
ities (e.g., tip of the feet; Fig. 5-left). This is unflat-
tering and is difficult to penalize because the predicted
crop can be within pixels of the true crop. Manually-
annotated ranking datasets may explicitly label such
crops as bad (Wei et al. 2018). Without relying on manual
annotations, we introduce a margin L1 loss to discourage
crops within 2.5% of the subject mask’s bounding box.
To avoid overriding real labels, this loss is applied only
if the label also does not crop on or near the subject.

Implementation. We optimize the network end-to-end us-
ing AdamW (Loshchilov and Hutter 2019) and cosine an-
nealing (Loshchilov and Hutter 2017). In addition to the in-
put processing described above, we apply standard image
augmentations (e.g., flip, color jitter, blur, distortion, etc.).
See supplemental §C.2 for hyper-parameters and details.

4 Stock Image Dataset
Unsplash contains over three million curated images and
is publicly accessible for research use (Unsplash 2023).
While our primary motivation is to crop human portraits,
we also experiment with five other categories: cats, dogs,
horses, birds, and cars. We select the relevant images using
provided metadata and off-the-shelf object detection as de-
scribed in §3.1. Because Unsplash reflects a real-world dis-
tribution of images and subject matter submitted by photog-
raphers, the amount of data by subject varies. After filtering,
we are left with 73K, 8K, 11K, 2.8K, 12K and 11K images
for portraits, cats, dogs, birds, horses, and cars. We designate
a fraction of the images for test and validation; see Tab. 1.

4.1 Evaluation Sets for Subject-Aware Cropping
Prior cropping datasets such as FLMS (Fang et al. 2014),
FCDB (Chen et al. 2017a), and SACD (Yang et al. 2023)
lack the quantity of images in any particular subject cate-
gory needed to serve as evaluation (having only 500, 348,
and 290 test images total). In order to evaluate GenCrop,
we construct new evaluation sets for the six aforementioned
subjects, derived from the Unsplash testing images. We se-
lect Unsplash images with space for tighter crops (alterna-
tive framings) and task the model to produce crops that pre-

FCDB+FLMS SACD
Method Trained on WS IoU ↑ Disp ↓ IoU ↑ Disp ↓

VFN CPC *0.6509 *0.0876 - -
LVRN CPC *0.7373 *0.0674 †0.6962 †0.0765
GAIC CPC *0.7260 *0.0708 - -
GAIC GAICD - - †0.7124 †0.0696
CGS CPC *0.7331 *0.0689 - -
CACNet FCDB,KUPCP *0.7364 *0.0676 0.7109 0.0716
HCIC GAICD - - 0.7120 0.0683
HCIC CPC *0.7469 *0.0648 0.7109 0.0712
FRCNN-m SACD - - †0.7306 †0.0587
SAC-Net SACD - - †0.7665 †0.0491

VFN Flickr ✓ *0.5115 *0.1257 †0.6690 †0.0887
VFN Unsplash ✓ 0.5783 0.1114 0.6555 0.0775
GenCrop Unsplash ✓ 0.7334 0.0687 0.7301 0.0632

Table 2: Quantitative comparison on existing bench-
marks. The best result in each category is bold; WS in-
dicates weakly-supervised. * and † are results reported
by (Zhang et al. 2022) and (Yang et al. 2023), respectively.
FCDB+FLMS is the human-centric test-set used by (Zhang
et al. 2022). SACD is the subject-aware dataset from (Yang
et al. 2023), which includes non-human subjects. GenCrop
refers to our model trained on outpainted human portraits.

serve the aesthetic qualities of a good composition; a good
cropping model should not produce bad crops that violate
compositional norms (e.g., by cutting through a person at a
joint). Therefore, to create an evaluation set, one author of
this paper, who is a photography domain expert, annotated
crops for 1,905 images of the six aforementioned subjects
(see Tab. 1), producing 2.3 good crops per image on average.
The annotations for this data and the images are all publicly
available. We also use these images for qualitative evalua-
tion in §5.2, where we measure the rate at which cropping
methods produce common framing errors.

5 Experiments
In §5.1, we evaluate GenCrop quantitatively on the exist-
ing subject-aware cropping benchmarks (Yang et al. 2023;
Zhang et al. 2022) and our class-specific test sets described
in §4.1. In order to control subjectivity and to provide clearer
insight into cropping model failures, we measure the viola-
tion rate for crops on a set of five pre-determined, objec-
tive aesthetic-quality guidelines (§5.2). We also conduct ad-
ditional experiments and ablations in §5.3 and §5.4.

5.1 Quantitative Evaluation
Metrics. Intersection-over-Union (IoU) and boundary dis-
placement (Disp) are common metrics for cropping evalua-
tion used in prior work (Zhang et al. 2022; Yang et al. 2023).
If there are multiple ground-truth labels in an image, we fol-
low the standard protocol of using the label with the top IoU
to evaluate the prediction. While IoU and displacement met-
rics are not fully informative of cropping quality, they pro-
vide a standardized way to compare to existing methods.



Human Cat Dog Bird Horse Car
Method Trained on Weak sup IoU ↑ Disp ↓ IoU ↑ Disp ↓ IoU ↑ Disp ↓ IoU ↑ Disp ↓ IoU ↑ Disp ↓ IoU ↑ Disp ↓

CACNet FCDB,KUPCP 0.749 0.062 0.740 0.065 0.742 0.063 0.696 0.076 0.757 0.060 0.727 0.068
HCIC GAICD 0.723 0.065 0.733 0.065 0.740 0.061 0.696 0.074 0.754 0.059 0.730 0.064
HCIC CPC 0.750 0.060 0.769 0.056 0.759 0.057 0.714 0.069 0.759 0.059 0.735 0.065

VFN Unsplash ✓ 0.622 0.095 0.633 0.093 0.621 0.095 0.573 0.106 0.623 0.093 0.633 0.088
GenCrop Unsplash ✓ 0.750 0.061 0.777 0.054 0.758 0.058 0.712 0.071 0.757 0.059 0.744 0.063

GenCrop-6 (all 6) ✓ 0.752 0.060 0.767 0.057 0.748 0.061 0.719 0.069 0.760 0.058 0.742 0.062
GenCrop-H (humans) ✓ 0.750 0.061 0.767 0.056 0.751 0.059 0.711 0.070 0.748 0.061 0.748 0.060

Table 3: Quantitative comparison on different subject types. Best results per category are bold. We evaluate HCIC (Zhang
et al. 2022) without its human-specific feature partitioning scheme for non-human subjects. GenCrop, trained on synthesized
data of the subject category (middle), is competitive with supervised methods (top). To test whether specialization of the training
data is necessary, we test GenCrop-6, trained jointly on all six categories, and GenCrop-H, trained on humans only but applied
to other categories (bottom). The results are similar between all three GenCrop variations, suggesting a degree of generalization.

Method Human Cat Dog Bird Horse Car Mean

VFN 52 41 59 60 55 40 51.2
CACNet 10 9 13 17 23 9 13.5
HCIC (CPC) 9 10 12 12 7 3 8.8
GenCrop 11 7 5 3 15 3 7.3

GenCrop-H (human) 11 6 5 9 10 4 7.5
GenCrop-6 (all 6) 8 3 3 1 4 8 4.5

Table 4: Qualitative results. Percentage of images with
one or more violations (↓ is better; definitions in §5.2).
GenCrop-H and GenCrop-6 are trained on human and all
6 classes. See supplemental Tab. 1 for the full breakdown.

Method V1 V2 V3 V4 V5

VFN 19.7 10.1 11.0 2.6 5.3
CACNet 6.8 1.8 4.5 1.0 1.8
HCIC (CPC) 3.7 0.8 2.8 0.6 2.1
GenCrop 2.5 2.8 1.0 1.5 0.6

GenCrop-H (human) 1.7 2.5 1.5 2.0 1.7
GenCrop-6 (all 6) 0.8 1.3 0.3 1.7 1.0

Table 5: Qualitative results. Percentage of images with vio-
lations, by violation type and aggregated across the six sub-
ject classes (↓ is better; definitions in §5.2). GenCrop-H and
GenCrop-6 are trained on human images and all of the data.

Baselines. We compare GenCrop to HCIC (Zhang et al.
2022), CACNet (Hong et al. 2021), and VFN (Chen et al.
2017b) and reported results in prior work (Yang et al. 2023).

HCIC and CACNet are recent, supervised methods with
publicly available code; HCIC is trained on CPC (Wei et al.
2018) or GAICD (Zeng et al. 2019) and is subject-aware,
while CACNet is trained on FCDB (Chen et al. 2017a)
and KUPCP (Lee et al. 2018). VFN (Chen et al. 2017b) is
weakly supervised (though it can also be trained in a super-
vised manner on CPC). For direct comparison to GenCrop,
we train VFN on Unsplash images, including our subject
masks and using the same ResNet-50 backbone.

Figure 5: Examples of crops with subtle mistakes (input
on left; crop on right). First pair: the crop cuts through the
subject’s feet. Second pair: the crop leaves clutter on the
edges and places the subject neither centered for left-right
symmetry nor at a third, resulting in an unbalanced image.

Figure 6: Conditional cropping model. We are able to sam-
ple crop variations by varying the “area” (top) and “aspect
ratio” (bottom) conditioning at inference time.

Comparison on prior benchmarks. Tab. 2 compares our
GenCrop to prior work on existing, published benchmarks.
FCDB + FLMS is the human-centric test set used by (Zhang
et al. 2022). SACD is the test set from (Yang et al. 2023),
which also contains non-human images. We use GenCrop
trained on outpainted human portraits for these experiments.

GenCrop is significantly better than the comparable VFN
(up to 0.15 IoU and 0.04 Disp) and is competitive with su-
pervised methods on both datasets. GenCrop is within 0.014
IoU and 0.004 Disp to HCIC on FCDB + FLMS and bet-
ter than HCIC, GAIC, and CACNet on SACD (by around
0.02 IoU and 0.005 Disp). On SACD, GenCrop is within
0.036 IoU and 0.014 Disp of SAC-Net (Yang et al. 2023), a
method tailored around the human-annotated label structure
in the SACD training data. Despite SACD not being human-
subject exclusive, GenCrop trained on human portraits is
able to show generalization ability — more so than other
supervised methods trained on GAICD, CPC, and FCDB.



Comparison on the Unsplash test sets from §4.1. Tab. 3
shows results on the six categories: humans, cats, dogs,
birds, horses, and cars. GenCrop is trained on generated data
filtered by subject category, and it significantly outperforms
VFN, while remaining competitive with supervised meth-
ods. We also test two additional versions of GenCrop: (1)
trained jointly on the six categories (GenCrop-6) and (2)
trained on humans only (GenCrop-H). All three variations
of GenCrop perform similarly, showing that specialization
of the synthetic dataset to the subject category is not neces-
sary (though it can obtain similar results with less data).

5.2 Qualitative Evaluation
Image cropping is challenging to evaluate as the best crop
is subjective. Quantitative metrics such as IoU and Disp
are also not fully informative (Zeng et al. 2019). Narrow-
ing the evaluation by subject type (e.g., human portraits) can
be more objective since there are well-established technical
rules on what makes a bad crop. For instance, cropping a per-
son through a joint (e.g., ankle, knee, elbow) is generally re-
garded as unflattering (Popular Photography 2016; Northrup
and Northrup 2019). We perform a qualitative evaluation
that counts the number of such violations in a sample of
100 images per class. Specifically, we consider five (non-
mutually-exclusive) questions: Does the crop:
1. cut unnaturally through the subject?
2. cut unnaturally through the scene (e.g., other objects)?
3. have too much or too little negative space?
4. have or create unnecessary clutter around the edges?
5. lack balance (e.g., missing symmetries, rule-of-thirds)?
Fig. 5 shows two crops with subtle mistakes (to casual ob-
servers). Please refer to supplemental §A.2 for more detailed
explanations and additional visual examples.

While these five criteria are not exhaustive, they reflect
common errors that we observed and critiques that a poorly-
composed image might receive. Also, although experts may
deliberately violate these rules for artistic expression, we ob-
serve empirically that cropping model failures on these cri-
teria are indicative of bad crops.

Tab. 4 and Tab. 5 compare the methods by the subject cat-
egory and the violation type, respectively. Like in Tab. 3,
we compare the default (specialized) GenCrop, GenCrop-
H trained on human images only, and GenCrop-6 trained
jointly on all six classes. All three versions of GenCrop are
better than or competitive with (supervised) HCIC and CAC-
Net. GenCrop-6 is the best in five of six subjects and over-
all, suggesting that more training data is helpful. This can be
seen on the horse class (which has the fewest training im-
ages), where the specialized GenCrop makes 2× as many
errors as HCIC, but GenCrop-6 makes only 0.6× as many.

By violation type, all three versions of GenCrop do well
at preserving the subject (V1) and managing negative space
(V3). However, HCIC and CACNet are better at preserving
context (V2) and managing edge clutter (V4).

5.3 Extension: Conditioning Signal
A common limitation of methods that directly regress a crop
is that they lack user control: one cannot specify an aspect

ratio or tightness. We propose a small extension of GenCrop
that is conditioned on the above properties and hypothesize
that, given a large number of training images, GenCrop-C
can disentangle aspect ratio and tightness (area) while still
learning to predict good crops. To achieve this, we swap
the transformer-encoder in GenCrop with a transformer-
decoder (Vaswani et al. 2023) and encode the conditioning
with a feed-forward network (details in supplemental §C.3).
Fig. 6 shows examples with different conditioning applied.
While GenCrop-C does not enforce exact adherence to the
signal, it does generally respect orientation (portrait vs. land-
scape), and changing the signal varies the crops (in aspect
and tightness). We anticipate that future work may improve
adherence or could learn to condition on other interesting
properties from the data (e.g., composition patterns).

5.4 Additional Results, Ablations & Images

Please refer to supplemental §A.1 – §A.9 for additional
analysis (e.g., computational cost, different cropping model
architectures, results on cropping generic images, ranking
metrics), ablations (e.g., subject-awareness, our data-quality
filters, training dataset size), and example crops.

6 Discussion & Conclusion

We have demonstrated that it is possible to equal or surpass
fully-supervised performance on subject-aware image crop-
ping using a weakly-supervised approach that requires only
stock photos and a pre-trained generative model.

GenCrop has its limitations. Training and evaluating on
generic data (unknown or arbitrary subjects) is difficult be-
cause of the distribution mismatch between professional
images in Unsplash and the cropping datasets created by
crowd-sourcing (Chen et al. 2017a; Fang et al. 2014). Meth-
ods to calibrate Unsplash to these distributions could im-
prove performance but are not a focus of this paper. Gen-
Crop’s pseudo-labels are sparse (1-per-image) and do not
reproduce the dense crop-ranking annotations in GAICD,
CPC, and SACD. Other composition issues such as parallax
and occlusions cannot be fixed by cropping alone. Genera-
tive methods show promise for more advanced tasks such as
searching for good perspectives in a NeRF (Martin-Brualla
et al. 2021) or a 3D-transformed photo (Niklaus et al. 2019).

Pairing inputs to labels is a common approach to learn-
ing, and obtaining both often requires an expensive annota-
tion process. Weakly-supervised learning typically relies on
lower-quality-but-cheap labels to generalize and, by itself, is
often not competitive with supervised approaches — e.g., on
ImageNet classification (Deng et al. 2009). We have shown
an instance where generative foundation models (Rombach
et al. 2022) can invert this norm and convert plentiful, ex-
pert labels (i.e., finished products) into otherwise difficult-
to-obtain inputs. This has implications for other learning
problems where obtaining complete training data is hard.
As the capabilities of image and text foundation models ad-
vance, we anticipate this paradigm will become a viable data
creation strategy for other applications as well.
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