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A Additional Results and Ablations

We include additional results omitted from the main paper.
Fig. 1 and Fig. 2 show cropping results on images from Un-
splash (Unsplash 2023) and FCDB (Chen et al. 2017a), re-
spectively. Fig. 3 shows additional examples by GenCrop-C,
our cropping model trained with area and aspect ratio con-
ditioning. This rest of the section is organized as follows.

* §A.1 analyzes the cost of our image generation pipeline.

* §A.2 provides our full qualitative results on our five eval-
uation criteria introduced in §5.2 of the main text.

* §A.3 — §A.5 ablate subject awareness, data filtering, and
training dataset size in order to better understand the per-
formance of GenCrop.

* §A.6 and §A.7 modify our cropping model with addi-
tional inputs and different CNN architectures to investi-
gate the extent that these reasonable deviations to model
architecture affect performance.

* §A.8 compares GenCrop on generic images in
FCDB (Chen et al. 2017a), without the human-centric
focus and subject-awareness.

* §A.9 compares GenCrop on human-centric crop ranking
in GAICD (Zeng et al. 2019).

We also provide examples of generated images from our
pipeline. Figs. 5, 6, and 7 show outpainted images produced
by our pipeline and used for training; images outpainted
without text-conditioning; and images that are discarded by
filtering, respectively. We hope that these additional results
will provide useful baselines and commentary for future re-
search on weakly-supervised image cropping.

A.1 Computational Cost of Image Generation

The most expensive stage of our pipeline is the generation
of outpainted images. This is dominated by Stable Diffu-
sion (Rombach et al. 2022) (approximately 2 seconds per
image on a NVIDIA V100 GPU (Nvidia 2017) at 512x512
with 50 de-noising steps). The other pre-trained models that
we use for instance segmentation, YOLOv8x (Ultralytics
2023), and image captioning, BLIP-2 (6.7B) (Li et al. 2023),
take 26 and 380 ms per image, respectively. The overhead of
our data quality filtering using the CNN and subject heuristic
is negligible (2K images per second).

Our pipeline is trivially parallelizable across GPUs and
machines, and costs approximately $60 per 100K images,
using spot VMs, making it both extremely fast and low-cost,
even compared to crowd-sourcing annotations.

A.2 Full Qualitative Results

In the main results, we reported the number of cropping mis-
takes by method and category, aggregated by the five crite-
ria: Does the crop:

~

cut unnaturally through the subject?

cut unnaturally through the scene (e.g., other objects)?
have too much or too little negative space?

have unnecessary clutter around the edges?
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. lack balance (e.g., missing symmetries, rule-of-thirds)?

Fig. 4 provides full definitions and examples of these criteria
and their application to cropped images.

While these criteria still require an expert photographer to
judge, they reduce the subjectivity of qualitative evaluation
to key technical aspects of the image — which can be consis-
tently be found in reference books (such as (Popular Photog-
raphy 2016; Northrup and Northrup 2019)). This assessment
was performed by one of the paper authors, a photography
domain expert, on 600 unique images (100 per subject cate-
gory; 3,600 crops from the six methods) in a blinded exper-
iment, with all method names withheld and their ordering
randomized.!

We report the number of violations by each criterion
in Tab. 1. VFEN (Chen et al. 2017b), the prior weakly-
supervised method, performs very poorly in comparison to
GenCrop and the supervised HCIC (Zhang et al. 2022) and
CACNet (Hong et al. 2021) baselines; performance is espe-
cially bad on cropping through the subject (V1) and negative
space (V3), often by a factor of 2-4x or more. We are un-
able to compare to SAC-Net (Yang et al. 2023) due to code
not being available at time of submission. On all subjects ex-
cept horses, GenCrop produced fewer unnatural cuts through
the subject (V1) than HCIC, the second best. GenCrop also

"Prior work (Hong et al. 2021) also assessed the quality of
cropped images using coarse ‘good’, ‘normal’, and ‘bad’ buckets,
but because our subject-aware task definition is more restrictive,
we can apply a more focused set of technical criteria from the pho-
tography literature.



Method Weaksup V1 V2 V3 V4 V5
(a)  Portrait (Human)
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CACNet 7 2 1 1
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GenCrop 2 4 0 5
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(d) Horse
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(e) Bird
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Table 1: Full qualitative results. Number of images with
quality violation ({ is better) in 100 images sampled per
class (a — f). Refer to Fig. 4 for detailed explanation of
the evaluation criteria (V1 — V5). GenCrop is our method
trained on generated data of the subject class; GenCrop-H
is trained on generated data for humans; and GenCrop-6 is
trained jointly on generated data from all six classes. Anal-
ysis of these results is provided in §A.2. These results are
summarized in Tab. 4 and Tab. 5 of the main text.

is similar or better than HCIC at managing negative space
(V3) in the human, cat, dog, bird, and car images. How-
ever, GenCrop falls behind HCIC on V2 and V4, relating to
contextual objects and clutter on the edges. We believe that
HCIC is able to better avoid these mistakes having learned
on CPC (Wei et al. 2018) using their content-preservation
scheme. By contrast, GenCrop regresses crops directly, and
a crop with and without edge clutter can be very similar in
L1 distance due to the difference being only a few pixels.
While our subject boundary loss penalizes unnatural cuts
through the subject, defining such a loss over generic back-
grounds and context is more challenging. Horses are a chal-
lenging subject for GenCrop, the number of initial stock im-
ages is smaller by a factor of 3x (2.2K) than the next small-
est category, cats (6.7K). In this case, GenCrop-H trained on
human images (22x more data), performs better than Gen-
Cropz. On the other hand, we note that GenCrop-H is worse
than GenCrop targeted for birds, suggesting that given a suf-
ficient domain gap (human vs. bird appearance) and more
specialized training data, training on more (out-of-domain)
images alone does not guarantee improved performance.

GenCrop-6 makes the fewest violations overall and sug-
gests benefit from training on more diverse data. While
GenCrop-H has already shown competitive results on
subject-aware cropping problem posed by (Yang et al. 2023)
(unconstrained by subject type), GenCrop-6 suggests that
one could automatically construct a generated dataset to bet-
ter match a more generic distribution of categories by enu-
merating a small set of object classes.

A.3 Ablation of Subject-Awareness

Tab. 2a shows the importance of subject-awareness on the
subject-aware benchmarks: the human-centric images in
FLMS (Fang et al. 2014) and FCDB (Chen et al. 2017a) used
by (Zhang et al. 2022); the SACD (Yang et al. 2023) dataset;
and our 1000 annotated human portraits (Portrait1K) from
Unsplash (Unsplash 2023). We ablate the subject bound-
ary loss, use of subject information (the mask and bounding
box), and subject-focused dataset construction (by training
on generic data outpainted from Unsplash images without
filtering for humans). These ablations are cumulative; re-
moving subject information also removes the subject bound-
ary loss since its computation depends on the subject mask;
using generic images (reflecting the full content distribution
of Unsplash) means that the subject and its type, if any, are
not known.

We find that removing the subject boundary loss and sub-
ject information leads to a drop in IoU and increase in Disp.
The result is small (up to 0.02 IoU and 0.007 Disp), com-
pared to the large up-to 0.16 IoU and 0.05 Disp advan-
tage GenCrop has over the prior weakly-supervised method,
VEN (Chen et al. 2017b). Training GenCrop on generic im-
ages (not restricted to humans and with no estimated sub-
ject) leads to a slightly larger loss of performance (up to 0.04
IoU and 0.01 Disp). This shows that our outpainting based
method is still effective over VFN, but that selection of rel-
evant data and some subject-awareness (e.g., using subject

*Horse images may still contain humans such as riders.



FLMS+FCDB SACD Portrait1 K
Method IoUft Displ IoUT Disp) IoUt Displ
VEFN (for reference) 0.5783 0.1114 0.6555 0.0775 0.6222  0.0948
GenCrop 0.7334 0.0687 0.7301 0.0632 0.7501 0.0612
(a)  Ablation of subject-awareness
w/o subject boundary loss 0.7145 0.0724 0.7207 0.0653 0.7458 0.0615
w/o subject information 0.7202 0.0714 0.7105 0.0695 0.7429 0.0628
w/ generic images 0.6861 0.0812 0.7037 0.0716 0.7396  0.0643
(b)  Ablation of data filtering
w/o CNN-based filter 0.7112 0.0734 0.7181 0.0666 0.7409 0.0632
w/o CNN & heuristic filter ~ 0.6987  0.0765 0.7217 0.0656 0.7398  0.0640

(c)  Ablation of training dataset size (number of stock images used for outpainting)

w/ 10000 images (19.2 %) 0.7174 0.0719 0.7238 0.0658 0.7640 0.0570

w/ 1000 images (1.9 %) 0.7007 0.0756 0.7215 0.0658 0.7441 0.0613

w/ 100 images (0.2 %) 0.6865 0.0780 0.6918 0.0709 0.7143  0.0655
(d) Additional inputs to the cropping model

w/ depth (Bhat et al. 2023)  0.7226  0.0708 0.7245 0.0649 0.7505 0.0610

w/ edges (Canny 1986) 0.7205 0.0715 0.7225 0.0661 0.7477 0.0619
(e)  Different CNN feature extractors

ResNet-18 0.7181 0.0726  0.7237 0.0648 0.7408 0.0640

VGG-16 0.7241 0.0706  0.7247 0.0635 0.7457 0.0623

MobileNet-V2 0.7207 0.0710 0.7284 0.0633 0.7565 0.0592
(f)  Different model architectures

U-Net (see §C.3 for details) 0.7365 0.0683 0.7195 0.0680 0.7420 0.0652

Table 2: Ablations and additional experiments. FCDB+FLMS is the human-centric test-set used by (Zhang et al. 2022).
SACD is the subject-aware dataset from (Yang et al. 2023). Portrait1K refers to our annotated human images from Unsplash
(§B.2). We provide the results for GenCrop and VFN reported in the main paper for reference. Analysis of these results is
provided in the corresponding sections of §A. At a high level, we find that: (a) Knowledge about the subject benefits subject-
aware cropping. (b) Removing poorly outpainted images improves cropping model accuracy. (c) Reducing the number of stock
images available for outpainting lowers performance, as there is less diversity in the dataset. (d) Additional inputs (such as
depth or edge detections) to the cropping model do not provide clear benefits. (e) Different CNN feature extractors provide
similar performance as the ResNet-50 used in our main results. (f) GenCrop is not bound to a particular model architecture.
The value from GenCrop comes from dataset generation, and even a simpler U-Net baseline (implementation details in §C.3)

can realize the benefits of our data generation approach.

Method Trained on Weak sup IoU 1 Disp |
A2RL (Li et al. 2018) AVA 0.663 0.082
A3RL (Li et al. 2019) AVA 0.696 0.077
VPN (Wei et al. 2018) CPC 0.711 0.073
VEN (Wei et al. 2018) CPC 0.735 0.072
ASM (Tu et al. 2020) CPC 0.749 0.068
GAIC (Zeng et al. 2019) GAICD 0.672 0.084
CGS (Li et al. 2020) GAICD 0.685 0.079
TransView (Pan et al. 2021) GAICD 0.685 0.080
(Wang et al. 2023) GAICD 0.686 0.078
VEN (Chen et al. 2017b) Unsplash v 0.450 0.147
GenCrop Unsplash v 0.654 0.090
GenCrop (U-Net) Unsplash v 0.670 0.086

Table 3: Evaluation on generic images in FCDB (Chen
et al. 2017a). Apart from VFN (Chen et al. 2017b) which
we train on Unsplash, the reported numbers are from the
original papers and (Wang et al. 2023).

Method Trained on Weak sup SRCC 1 Accs T Accio T
VEN GAICD "0.648 413 602
HCIC GAICD "0.795 597 *77.0
VEN Flickr v 0332 101 "21.1
VEN Unsplash v 0.203 133 19.1
GenCrop-R  Unsplash v 0.446 23.1 38.5

Table 4: Comparison on the 50 human-centric test im-
ages in GAICD. " indicates results reported by (Zhang et al.
2022); refer to their paper for the full table of baselines. As
noted in supplemental §A.9, the sparse supervision gener-
ated by GenCrop is poorly calibrated to the ranking labels
in GAICD. Our version of GenCrop (GenCrop-R), modified
for ranking performs better than VFN, which also does not
have access to score and rank labels (e.g., being trained on
Flickr or Unsplash), but results are poor compared to models
that directly train on GAICD.



Method # Params Inference time (ms)
HCIC (Zhang et al. 2022) 19.47TM *7.8
CACNet (Hong et al. 2021) 18.93M 34
GenCrop 24.93M 5.7

Table 5: Comparison between models: GenCrop and the
baselines. Cropping model complexity and inference time
are not a key priority of this paper, but we include these de-
tails for completeness. We measured inference time per im-
age on a single NVIDIA RTX A5000 GPU (Nvidia 2021),
except for HCIC (*) which is their reported inference time
(128 FPS or 7.8 milliseconds), computed on a slightly more
powerful RTX 3090. We were unable to reproduce HCIC’s
performance using the available code. GenCrop is slower
than CACNet (Hong et al. 2021) by 1.7x, but faster than
HCIC (Zhang et al. 2022) by 0.37x (despite a less powerful
GPU). Both GenCrop and CACNet directly regress a crop,
while HCIC ranks based on a set of candidates.

masks produced as a by-product of data filtering) is benefi-
cial when the task is to crop images with a defined subject.

A.4 Ablation of Data Filtering

The quality of the outpainted dataset has a small impact on
the final cropping performance ranging from 0.03 to 0.01 on
IoU and 0.008 to 0.002 on Disp (Tab. 2b). As with subject-
awareness, GenCrop outperforms VEN (Chen et al. 2017b)
by a large margin even without filtering. The effect of filter-
ing with the CNN classifier, D yq14t, and the additional out-
painted subject heuristic are similar; many of the images re-
moved by the subject heuristic are also removed by the CNN
classifier, and vice versa. For example, in Fig. 7a (columns
1, 2 and 4), a tiled or composite image is very likely to have
additional instances of the subject class.

In the context of this work, the two data filtering steps,
as well as our use of the image captioning model (Li et al.
2023), are implementation details for operating the current
Stable Diffusion (Rombach et al. 2022) model. We expect
that future text-to-image inpainting models will produce
fewer composite images or images with redundant subjects
and be more faithful to text and image conditioning. Recent
works such as (Zhang and Agrawala 2023; Hertz et al. 2022;
Sarukkai et al. 2023) have explored additional control for
such text-to-image diffusion models and these approaches
could eliminate the need for data filtering by preventing un-
desirable content from being generated.

A.5 Ablation of Training Data Size

We study the impact of the number of stock images needed
to train GenCrop. In Tab. 2c, we vary the number of images,
fixing the category to humans.

There is a steady drop off in performance on the human-
centric images of FLMS + FCDB and on SACD as the num-
ber of starting images is reduced to 10K and then 1K. With
only 100 images, the performance is similar to removing
subject-awareness and training on the unfiltered images in
Unsplash — compare to generic images, Tab. 2a. More image

diversity is clearly beneficial, possibly due to the domain gap
between training on Unsplash images and testing on these
datasets.

The fall-off is less severe on Portrait1K, our 1000 labeled
images from Unsplash. With 10K images, the IoU and Disp
actually increase slightly, before falling off at 1000 images
and fewer. The initial lift from reducing from 52K to 10K
is due to our default hyperparameters and training sched-
ule being more suited to a dataset approximately % of the
human dataset’s size (similar in size to that of the cat, dog,
bird, and car data); on Portrait1 K, we observe a similar boost
with the full 52K images when the training schedule is short-
ened by %. For consistency, we keep the same set of hyper-
parameters across subject classes when training GenCrop.

Training GenCrop on a dataset generated with only 100
images still outperforms VFN (Chen et al. 2017b) (trained
with 52K images). This clearly demonstrates the value that
dataset generation via outpainting provides.

A.6 Effect of Additional Input Modalities

Photographers take into account factors such as shape and
perspective (of which distance is a property) when compos-
ing an image. We consider whether additional input repre-
sentations such estimated depth (Bhat et al. 2023) and Canny
detected edges (Canny 1986) that loosely approximate these
factors can improve cropping performance. To test this, we
concatenate these modalities as an additional input chan-
nel to the CNN feature extractor. Tab. 2d shows that di-
rectly concatenating these inputs does not provide consistent
benefit on IoU and Disp metrics. Note that we do not ex-
plore larger modifications to the model architecture beyond
concatenation nor do we change the other learning hyper-
parameters, since these architectural directions are orthogo-
nal to the dataset generation focus of our paper.

Future works may try to incorporate these priors, and our
experiment here is to inform that the naive solution does not
provide obvious benefit.

A.7 Does Model Architecture Matter?

We test two variations of GenCrop’s architecture to evalu-
ate whether the CNN architecture used for feature extraction
matters and to test a simpler model architecture also trained
on GenCrop’s generated data.

Prior works (Hong et al. 2021; Zeng et al. 2019; Zhang
etal. 2022; Jia et al. 2022; Pan et al. 2021; Chen et al. 2017b)
have used a variety of CNN architectures for feature extrac-
tion, including AlexNet (Krizhevsky, Sutskever, and Hin-
ton 2012), VGG-16 (Simonyan and Zisserman 2015), and
MobileNet-V2 (Sandler et al. 2018). The choice of CNN for
feature extraction has a small impact on the final cropping
performance (Tab. 2c), with VGG-16 being slightly worse
on the three datasets and MobileNet-V?2 being slightly better
on Portrait1K, but worse on the others. Reducing the model
from ResNet-50 (He et al. 2016) to ResNet-18 lowers per-
formance.

We implemented a simpler baseline GenCrop (U-Net),
which uses a U-net predict a binary mask, representing each
pixel’s inclusion or exclusion in the crop. At inference time,
a threshold is applied and the bounding box of the largest



connected component is predicted as the crop. (See §C.3 for
details.) The GenCrop U-net model performs slightly bet-
ter than the regular GenCrop on human-centric images in
FLMS + FCDB but worse on SACD and Portrait1 K, our la-
beled set of 1000 human images in Unsplash (§B.2).

Overall, in both experiments, the magnitude of variation
is small compared to the lift over VFN (Chen et al. 2017b).
This suggests that the specific cropping model architecture
used for GenCrop is not as important as the generated data.

Note that we do not claim the CACNet (Hong et al. 2021)
inspired architecture that we use in the main paper a key
contribution of the paper. There is a large space of possi-
ble models (such as the U-net) that could have been used
in the experimentation, with likely similar effects. However,
we do observe that the specific design choices of our main
approach are easily amenable to extension with the subject
boundary loss (§3.2 in the main text) and conditional control
(§5.3 in the main text).

A.8 Comparison on Generic Images

We focused on the subject-aware cropping task in the main
text. GenCrop can also be used for ‘generic’ images, by
omitting the subject mask and subject-type specific filter-
ing during dataset generation. In this situation, we train on a
pseudo-label distribution that directly reflects Unsplash (Un-
splash 2023).

We show results in Tab. 3 for cropping on FCDB (Chen
et al. 2017a). GenCrop performs significantly better than
VEN (Chen et al. 2017b); approaches the performance of
supervised models trained using GAICD (Zeng et al. 2019)
and AVA (Murray, Marchesotti, and Perronnin 2012); but
lags behind models trained on CPC (Wei et al. 2018). The
simpler U-Net variant of GenCrop described in §A.7 per-
forms slightly better on FCDB, possibly because it is less
expressive and prone to over-fit to Unsplash.

The distribution mismatch between a stock image dataset
and benchmark dataset, such as FCDB (Chen et al. 2017a),
is a key confound. For example, artistic images such as tex-
tures, where the subject is a pattern, in Unsplash are unlikely
to be helpful on a benchmark like FCDB. Likewise, for sub-
sets of FCDB such as landscape images (where there is no
clearly segmentable subject), the composition is often sub-
par compared to stock images even with an ‘optimal’ crop
due to inattention to perspective when the image was cap-
tured. For these genres, we believe that helping casual pho-
tographers find better perspectives at capture time is a useful
and that learning what makes an artistic or dramatic perspec-
tive for landscape from stock images is an interesting direc-
tion for future work.

A.9 Comparison on Crop Ranking Tasks

Models that are trained on densely annotated crop ranking
datasets, e.g., GAICD (Zeng et al. 2019), are often evalu-
ated using ranking metrics. In this formulation of the crop-
ping problem, the training data includes multiple crops per
image along with ranks and scores. This is in contrast to
FCDB (Chen et al. 2017a) and GenCrop, where supervision
is sparse and each image has only a single label.

We find that these sparse datasets are insufficient to re-
produce the scores in GAICD. Ranking well involves cali-
bration of various intermediate-quality crops to crop scores.
Tab. 4 shows results by GenCrop-R, a naive implementation
of crop ranking using our generated datasets (see §C.3 for
details).

B Dataset Details

We provide additional details about the Unsplash dataset,
our hand-labeled evaluation sets for cropping different sub-
jects, and a comparison to existing image cropping datasets.

B.1 The Unsplash Dataset

The Unsplash dataset (Unsplash 2023) includes images and
metadata about each image, including the photographer,
popularity, and any collections the image is a part of. For
each subject, we filter the dataset by collections; for exam-
ple, for portraits we select any photo belonging to a collec-
tion about portraiture, people, etc.. To remove obscure im-
ages, we remove images with fewer than 1,000 views, as of
April 2023. Afterwards, we use the object detector (Ultra-
Iytics 2023) to remove images that do not contain detectable
instances of the subject class (using a score threshold of
0.5). Images that are discarded by this final step may be mis-
tagged or present the subject in a way that confuses object
detection (e.g., heavy occlusions, abstract styles). We also
discard images that have too many possible subjects (greater
than 5), have a subject that is too small (e.g., less than 0.1
of frame height), or too large (more than 0.8 of frame area).
The reason for discarding images with very large subjects
is because these are often artistic close-ups, like of hands.
Because of the large number of human images available,
we ran a standard 2D keypoint detector (Xu et al. 2022) on
the detections and excluded images where the shoulders are
not detected or the head is missing. This also helps to re-
move extreme close-ups and unusual posing; while helping
users compose these types of images is interesting, cropping
casual images to extreme close-ups is unlikely to produce
pleasing results due to other factors such as perspective that
cannot be fixed by cropping. Cars often appear in the back-
ground of images, so for the car class, we also discard im-
ages with objects of another COCO (Lin et al. 2014) class
with larger area than the car.

We split the dataset by photographer ID to avoid similar
images (potentially from the same photo-shoot) from cross-
ing the training, validation, and testing splits. When training
GenCrop-6 jointly on all six enumerated subject classes, we
exclude from the training set any images that are in the test
or validation splits of any of the six classes.

Fig. 9d shows example images from Unsplash.

B.2 Subject-Aware Evaluation Sets

For quantitative evaluation following existing protocols and
metrics, we annotated crops in 1,900 images from the test
splits. 1,000 of these images are for humans, since humans
are the most important and ubiquitous subject. For brevity,
we refer to this subset as Portrait] K. We annotate 200 im-
ages each for cats, dogs, horses, and birds, and 100 images
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Input image VEN CACNet HCIC GenCrop GenCrop-6

Figure 1: Example crops on Unsplash. (Unsplash 2023) GenCrop and GenCrop-6 are trained on generated images of the
subject category and images of all six studied categories (listed in §4 of the main text), respectively. GenCrop produces similar
quality results to (supervised) HCIC while VFN performs poorly.



Input image VEN CACNet HCIC GenCrop GenCrop-6

Figure 2: Example crops for human-centric images in FCDB. (Chen et al. 2017a) GenCrop and GenCrop-6 are trained on
generated images of humans and images of all six studied categories (listed in §4 of the main text), respectively. GenCrop
produces similar quality results to (supervised) HCIC while VFN performs poorly.



(b) Conditioning on aspect ratio. (Wide to tall)

Figure 3: Additional examples of cropping with conditioning (GenCrop-C). Original image on the left. By sweeping the
value of the conditioning signal, (a) from 0.1 to 1 for area and (b) from 16:9 to 9:16 for aspect ratio, we are able to sample
crops of different tightness. Note that extreme values can cause unnatural crops such as in the last row of (b), where the portrait
orientation of the starting image provides limited room for a wide, landscape crop. GenCrop-C also does not enforce exact
adherence to the conditioning at inference time; the conditioning is a continuous input signal akin to a hint to the model that is
considered jointly with the image content.



(a) V1: Does the crop cut unnaturally through the subject? A generally accepted rule of portrait photography is to never cut a person through
a joint or through the chin. A common mistake by cropping models is to cut the subject slightly through the feet, ankles, or hands as these are
often furthest from the subject center. We label these and more egregious errors as violations. For non-humans, we apply similar criteria for
whether a cut through a subject is unnatural. In images with multiple instances of the subject category (e.g., multiple people) we assess cuts
through any of the possible subjects.

(b) V2: Does the crop cut unnaturally through the scene? The scene can include other objects of interest in addition to the subject. Sometimes
these are objects that the subject is interacting with. We consider it an error if a crop removes part of an object in an unnatural or distracting
way. The example images crop the subject’s reflection at the neck, the dog’s feet, the horse’s head, the sun, and a 2nd person in bottom right.

(¢) V3: Does the crop have too much or too little negative space? Negative space is empty space around and between subjects in an image,
with positive space being the space occupied by subjects. The presence of negative space is often used to draw attention to the subject. We
label a crop as having too much or too little negative space if negative space is missing entirely (a very tight crop) or if there are unbalanced
amounts of negative space between the sides of the image (e.g., a large amount of negative space horizontally, but a very tight crop vertically).
Often more negative space is desired in the direction of the subject’s gaze or movement (Northrup and Northrup 2019).

(d) V4: Does the crop have unnecessary clutter around the edges? Cropping can improve framing by removing distractors from an image.
However, cropping the scene can also introduce distractors if salient objects or areas (e.g., bright areas, people) are only removed partially or
placed on the edges of the image. We label an crop as having introduced clutter if there is a similar / better crop that would have removed or
included the salient region.

(e) V5: Does the crop lack balance? Positioning of areas of interest in the frame is an important part of composition. The Rule-of-Thirds is
often promoted as an alternative to placing a subject directly centered. Other common techniques include looking for symmetries or lines that
lead into the image or arranging regions of interest to balance the sides of the image. For example, a framing might be nearly symmetric but
slightly off from the axis of symmetry, or the framing may place salient content too far toward the edges. In the example images, there are
more balanced compositions that can be achieved by slightly adjusting the crop.

Figure 4: Criteria for qualitative evaluation and example failures. (The example crops are taken from the baselines and
GenCrop.) We use these guidelines to control the subjectivity of qualitative evaluation and to provide insight on the types of
cropping errors made by the various models. Note that the criteria are not mutually exclusive.



Figure 5: Outpainted images used to train GenCrop. A random sample. Red shows the original image. Stable Diffu-
sion (Rombach et al. 2022) is able to produce a plausible, uncropped scene that a photographer might have seen. Contrast
this with Fig. 7, which shows images that were discarded by our filtering and not used for training.

(d) “a man reading a book on a subway”

Figure 6: Examples of outpainting with (left) and without (right) text conditioning. Conditioning with an estimated caption
from BLIP-2 (Li et al. 2023) improves the quality of the synthesized region. Without text conditioning, Stable Diffusion (Rom-
bach et al. 2022) may hallucinate arbitrary other objects and people into the outpainted regions. The text can be approximate
since its purpose is to prevent arbitrary content in the hallucinated region and the subject region is already known.



for cars. The selected images have at least one foreground
subject and have room to crop while preserving a good com-
position. While the images in Unsplash are already high-
quality images, our goal is to test cropping models’ abilities
to find alternative framings, while controlling the other vari-
ables such as proper exposure, good subject selection, and
subject posing that contribute to composition. Fig. 9¢ shows
examples of our annotations.

B.3 Comparison to Existing Evaluation Datasets

Prior works are limited by the amount of data available to
evaluate subject-aware cropping. This is a problem even
for portraits: (Zhang et al. 2022) uses 215 images from
FCDB (Chen et al. 2017a) and FLMS (Fang et al. 2014),
and 50 images from GAICD (Zeng et al. 2019) which they
identify as human-centric. The number of images for cats,
dogs, etc. is even more limited.

There is a large domain gap between professional images
from Unsplash and the annotations in FCDB (Chen et al.
2017a), FLMS (Fang et al. 2014), CPC (Wei et al. 2018),
GAICD (Zeng et al. 2019), and SACD (Yang et al. 2023).
This can be seen for example in the distribution of aspect
ratios in Fig. 8. GenCrop trained on Unsplash is likely to
produce crops that more closely reflect the Unsplash modes
of 3:2 and 2:3 (41% and 25%). By contrast, a large num-
ber of annotations in the prior benchmarks are 16:9 or wider
(e.g., 36% in FCDB compared to 6% in Unsplash). We also
performed a close examination of these datasets (Fang et al.
2014; Chen et al. 2017a; Yang et al. 2023) and we found ex-
amples of poor-quality ground-truth annotations, which vi-
olate composition rules found in the photography literature.
For example, while the annotators of these datasets may ap-
ply basic knowledge such as placing the subject according
to the rule-of-thirds (Popular Photography 2016; Northrup
and Northrup 2019), they sometimes do so in a way that
is inattentive to the wider context of the image, by crop-
ping through other subjects or salient content in the image.
Fig. 10 shows examples of these awkward labels.

C Implementation Details
C.1 Dataset Generation

Sampling an outpainting region and mask. We use out-
painting in our pipeline to create an un-cropped image given
an input image. The outpainting mask, defining the region to
be inpainted by the text-to-image diffusion model, needs to
be automatically generated for GenCrop to scale.

There are many possible ways to sample a region to be
outpainted (i.e., paste the input image into a square canvas).
We using the following approach. Given an input image, we
uniformly sample a desired area between 0.1 and 0.5 that
the input image should occupy in the outpainted result. We
downscale the image accordingly using bilinear interpola-
tion and paste the input image randomly in the 512x512
canvas. This approach is unreliable for input images with
very long or tall aspect ratios (e.g., 1:3), since they may ex-
ceed the canvas bounds even when resized. For these images,
we fall back to resizing them such that their longest side fits
in the canvas.

Stable Diffusion configuration. We use the Stable Dif-
fusion V2 (Rombach et al. 2022) inpainting model, with
guidance scale 4 and 50 denoising steps. The resolution is
512x512. In addition to the image caption from BLIP-2, we
apply the following negative prompt: “unrealistic, unnatu-
ral, collage, multiple images, ugly, deformed, disfigured, wa-
termark, signature, picture-frame, image border, photo al-
bum, photo gallery”. Despite aspects of the negative prompt
referring to diffusion artifacts (such as faces and limbs) and
the tiled/composite images, we find that such artifacts and
behavior are not avoidable using negative prompting in the
current Stable Diffusion models.

CNN-based quality filter. We anticipate that future pre-
trained text-to-image models will produce fewer ‘bad’ im-
ages (tiled, composite, or bordered) images. Classifying
the images (shown in Fig. 7a) is not a challenging vision
task, however, since the patterns are visually distinctive. Our
CNN-based quality filter, Dgyq1ity, serves as an example of
how to do so using well-known computer vision techniques.

D gyality 1s a standard ResNet-50 (He et al. 2016) trained
for binary prediction. It is trained on 3,048 outpainted im-
ages from Unsplash, with the starting images sampled at ran-
dom. Due to the low visual complexity of the task, a single
annotator was able to label these images in under 2 hours
(< 1.6 seconds per image). 500 additional images are used
for testing, to report accuracy statistics. Unlike the datasets
used for training GenCrop, the data used to train Dgyaiity
are generic since issues such as tiling and borders are unre-
lated to having a defined subject.

Low resolution is sufficient to detect composite, tiled,
and bordered images. The input dimension to the CNN is
128 x 128 x 3. We initialize the CNN with ImageNet (Deng
et al. 2009) pre-trained weights and train for 100 epochs
using AdamW (Loshchilov and Hutter 2019), with a base
learning rate of 0.0001 and cosine learning rate anneal-
ing (Loshchilov and Hutter 2017). Batch size is 64. After
training, the model has 93% accuracy overall and 0.79 pre-
cision and 0.74 recall for the ‘bad’ image category. The
training time is 5 seconds per epoch on an NVIDIA RTX
AS5000 (Nvidia 2021).

Sampling training pairs. The outpainted images pro-
duced by Stable Diffusion V2 are 512x512 squares. Since
we wish for our cropping model to generalize to cropping
images of other input dimensions that a user may supply, we
obtain training pairs by sampling an enclosing view within
the outpainted images. This requires that we sample an en-
closing aspect ratio, a scale, and an (z, y) position. The as-
pect ratio is sampled from between 1:1 to 16:9 (long:short).
With 20% probability, we choose an orientation different
from the label; i.e., enclosing a landscape crop within a por-
trait image or vice versa. We sample a scale between 1x
and 2 x, multiplied against the longest side of the crop label.
The (x, y) coordinates of the enclosing view are sampled us-
ing a piece-wise function: with 25% probability, we choose
an edge of the crop label, and, with the remaining 75%, we
sample uniformly. This is to prevent the model from learn-
ing that the edges of an image should always be removed,
since it is unlikely that uniformly sampling an enclosing



. 8-

®

(a) Outpainted images classified as “bad” by the CNN classifiet; Dgyaiity. Training on these images would be too easy since there are often
sharp boundaries near the crop label.

. -

(b) Outpainted images removed by the subject heuristic. Training on these images would be noisy since there is potentially another strong
subject to compete with the original for interest.

Figure 7: Examples of rejected outpainted images. Red shows the original image. (a) and (b) show images that are removed
by the CNN quality model and subject heuristics, respectively. Detecting the most common failures to produce a seamless and
realistic scene is not a challenging vision task; a combination of a binary CNN-based classifier and heuristics is effective.
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Figure 8: Distribution of ground-truth crop aspect ratios in the existing cropping datasets and Unsplash. For CPC and
GAICD, which have multiple crops per image with scores, we include up to the 75th percentile of crops. Professional images
in Unsplash (Unsplash 2023) (black stars) have a very different distribution than the ground-truth crops in FCDB (Chen et al.
2017a), FLMS (Fang et al. 2014), GAICD (Zeng et al. 2019), CPC (Wei et al. 2018), and SACD (Yang et al. 2023). The top
aspect ratios in Unsplash are 3:2 and 2:3, while the other datasets have a much more varied distribution.
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(b) Portrait images from FLMS (ground-truth crops in red)

o

(e) Images and annotations (red) from our Portrait1K evaluation set.

Figure 9: Example images from FCDB, FLMS, SACD, and Unsplash. (a, b, ¢c) Images from FCDB (Chen et al. 2017a),
FLMS (Fang et al. 2014), and SACD (Yang et al. 2023), respectively. (d) Our goal is to learn properties of professional image
framing from Unsplash (Unsplash 2023). (e) For quantitative evaluation, we annotated images from Unsplash that have room
for cropping while retaining good composition (e.g., adhering to the quality criteria in Fig. 4).



Figure 10: Examples of awkward ground-truth crop labels in prior datasets. The three rows show images from FLMS (Fang
et al. 2014), FCDB (Chen et al. 2017a), and SACD (Yang et al. 2023), respectively. Red is a ground-truth label. While some of
these crops follow basic composition rules such as the rule-of-thirds (Northrup and Northrup 2019), they have unclear aesthetic
quality (often due to the low quality of the starting image) and avoidable mistakes on other (more subtle) technical criteria such
as cropping people through their knees, ankles, and hands; having inappropriate amounts of negative space (i.e. space around
the subject); and handling the scene in an awkward manner (third row: tennis players; baseball players; and surfer).

view alone will include the edges in the label. We implement
the sampling steps listed above using rejection sampling.

C.2 Cropping Model and Training

Our default model architecture is based loosely on CAC-
Net (Hong et al. 2021), retaining a similar two branch struc-
ture — ‘cropping branch’ and ‘composition branch’ — fol-
lowing CNN feature extraction. However, we modify the in-
ternal components and losses in order to utilize the training
data produced by our pipeline. Since the focus of our work
is on dataset generation, we leverage relevant modules from
prior works (Hong et al. 2021; Zeng et al. 2019; He et al.
2017) and do not propose any novel architectural compo-
nents.

Inputs. The inputs to our model are 256 x 256 X 4 in
dimension, representing the three RGB color channels and
the subject mask (x, concatenated with m,). If the image
is not a square, then we pad the image using zeros to make
it square. The RGB channels are normalized with the Ima-
geNet (Deng et al. 2009) mean and standard deviation. The
subject mask is a binary 0 or 1. During training we aug-
ment the RGB channels using random color jitter, gaussian
blur, and grayscale conversion. We also apply random elastic
distortion and horizontal flips to both the RGB and subject
mask. A small amount of jitter is also introduced to the sub-
ject bounding box.

CNN feature extractor. Similar to prior work (Hong et al.
2021; Zhang et al. 2022), we extract multi-scale features
from the input using a CNN. We use a ResNet-50 (He et al.

2016) with ImageNet (Deng et al. 2009) pre-trained weights,
from the Pytorch Image Models (Wightman 2019) library.
ResNet-50 has 5 stages; we take the features from the final
three stages. Given 256 x 256 spatial dimension input, the
features produced by the last three stages are 32 x 32 x 512,
16 x 16 x 1024, and 8 x 8 x 2048. We downsample each
of these features using a learned 1x 1 convolution followed
by bilinear interpolation to 16 x 16 x 256. Then we sum the
features and downsample them to 16 x 16 x 32 using another
learned 1x 1 convolution followed by a ReLU activation.

Cropping branch. The cropping branch is a transformer-
encoder (Vaswani et al. 2023). The 256 input tokens are the
flattened 16 x 16 x 32 grid of features from the CNN feature
extractor. We use positional encoding to encode the spatial
location of each token. The transformer-encoder has 8 at-
tention heads and 2 layers. We apply a final linear layer to
the transformer-encoder output to produce 256 crop propos-
als, which represent the offsets of a crop (similar to CAC-
Net (Hong et al. 2021)).

Composition branch. The task of the ‘composition
branch’ is to predict the relative weights of the crop pro-
posals. In CACNet (Hong et al. 2021), it is trained on
KUPCP (Lee et al. 2018) a composition classification
dataset, hence the name.

To remain weakly-supervised, we do not use KUPCP for
training. Instead, we train the branch to weight the crop pro-
posals using only the regression losses described in §3.2 of
the main text. To obtain a weight for a crop proposal, we use
RolAlign (He et al. 2017) and RoDAlign (Zeng et al. 2019)



— commonly used in the cropping literature (Zeng et al.
2019; Zhang et al. 2022; Yang et al. 2023). RolAlign pools
the features inside the crop proposal region (box), while Ro-
DAlign pools the features outside the crop proposal region
(box). The input to these two layers are the 16 x 16 x 32
grid of features produced by the CNN backbone. RolAlign
and RoDAlign each produce 5 x 5 x 32 features, which we
concatenate and pool to a 128 dimensional vector using a
single learned 5x5 convolution, without padding, followed
by a ReL.U activation. This is fed to a shallow feed-forward
network with 128 hidden units and a ReLU activation to pro-
duce a scalar weight.

Only weights for anchor points that are within the sub-
ject bounding box are considered. For anchor points that are
outside the subject bounding box, we set their weight to 0.
(This also excludes anchor points that lie in padded regions.)
Lastly, we compute a softmax over the weights to produce a
distribution over the crop proposals, and the weighted sum
of the proposals is the final crop prediction: y.

Hyperparameters and training. We train all parts of the
network (CNN feature extractor, ‘cropping branch’, and
‘composition branch’) end-to-end. As mentioned in the main
text, we use AdamW (Loshchilov and Hutter 2019) with a
learning rate of 0.0001, cosine annealing (Loshchilov and
Hutter 2017), and batch size of 32. The first 500 steps are
warm-up. The network is trained for 50 epochs, with an
epoch defined as one pass over the quantity of original Un-
splash images — i.e., even if we generated five outpaintings
per image, we sample only one outpainting per image per
epoch. At the end of every epoch, we compute the loss on
the validation set.

Inference. At inference time, we process the inputs in
the same way as during training, with all data augmen-
tations disabled. The output of our model is a 4 dimen-
sional vector, y, representing the coordinates of the crop

(i.e., T1,Y1,T2, yz).

Model complexity and performance. Our model has
24.9 million parameters. During training, the model takes
0.43 seconds per batch on a single NVIDIA RTX A5000
GPU (Nvidia 2021). The sizes of the datasets used for train-
ing vary (see Tab. 1 in the main text). An epoch on the
human (49K images after quality filtering) dataset takes
approximately 11 minutes, while an epoch on the horse
dataset (2.1K) takes 26 seconds. For consistency, we use the
same hyper-parameters (learning rate, epochs, etc.) for all
datasets. Inference with the model takes approximately 5.7
milliseconds per image on a single NVIDIA RTX A5000
GPU. Tab. 5 compares our model to the baselines.

C.3 Cropping Model Variants

In addition to the GenCrop model described in §C.2, we de-
scribe three architectural variations that are also trained on
the same outpainted datasets. These are the conditional crop-
ping model, GenCrop-C, used in the §5.3 of the main text;
the U-net baseline, GenCrop (U-Net), used in §A.7; and the
naive crop ranking method, GenCrop-R, used in §A.9.

Conditional model: GenCrop-C. GenCrop-C has the
same architecture as GenCrop except that the transformer-
encoder (Vaswani et al. 2023) is replaced with a transformer-
decoder. The transformer-decoder receives as additional in-
put the encoded conditioning signal. The encoding is per-
formed by a 2-layer feed-forward network with 32 hidden
units, ReLU activations, and dropout. At training time, the
conditioning signal is the area and/or aspect ratio of the
ground truth crop. We feed area as a single scalar value be-
tween O and 1. Aspect ratio is encoded as a 2-dimensional
vector, where the first dimension is the aspect ratio (i.e.,
height divided by width) and the second is the inverse as-
pect ratio.

The area conditioned model receives only the area as
additional input. Meanwhile, the aspect ratio conditioned
model receives both the area and aspect ratio. We find that
the aspect ratio conditioned model also requires area condi-
tioning in order to produce a larger range of aspect ratios; for
example, finding a wide 3:2 landscape crop in a tall portrait-
oriented image.

At test time, the ground truth area and aspect ratio are not
known. For the example images in Fig. 3, we sweep between
0.1 and 1 for area and 16:9 to 9:16 (holding area condition-
ing constant at 0.34).

One limitation of GenCrop-C is that the conditioning sig-
nal is not directly enforced. L.e., applying area conditioning
of 0.1 will not produce to a crop with exact area of 0.1. How-
ever, as Fig. 3 shows, shrinking the area condition does lead
to smaller crops. The model successfully learns a correla-
tion between the conditioning and the outputs. We delegate
further architectural improvements to future work.

U-Net Baseline: GenCrop (U-Net). As a simple baseline
using GenCrop’s dataset, we train a U-Net (Ronneberger,
Fischer, and Brox 2015) to directly predict the crop mask.
The architecture is based on ResNet-50 (He et al. 2016)
and initialized with ImageNet (Deng et al. 2009) pre-trained
weights. The model receives as input a 224 x224 RGB im-
age and subject mask. The output is a 224 X224 mask pre-
diction, where each pixel is a score for whether it is in the
crop or not. The model is trained with a binary cross-entropy
loss on every pixel. We train the model for 10 epochs, using
AdamW (Loshchilov and Hutter 2019) with a learning rate
of 0.0001, cosine annealing (Loshchilov and Hutter 2017),
and batch size of 32.

At inference time, we apply a threshold of 0.5 to the pre-
dicted mask and select the largest connected component. We
then crop the image to the bounding box of the connected
component. Compared to GenCrop, the U-Net baseline is
simpler, but lacks control over the crop boundary.

Ranking model: GenCrop-R. GenCrop-R is used only
for the ranking-methods experiment in §A.9. We use a stan-
dard ResNet-50 (He et al. 2016), tasked with classifying
whether a crop is real or a randomly sampled from the im-
age. Like other variations of GenCrop, GenCrop-R’s inputs
are a 224x224 RGB image and subject mask. We initial-
ize the model with ImageNet (Deng et al. 2009) pre-trained
weights and optimize with binary cross-entropy loss. We
train the model for 10 epochs, using AdamW (Loshchilov



and Hutter 2019) with a learning rate of 0.0001, cosine an-
nealing (Loshchilov and Hutter 2017), and batch size of
32. At inference time, we generate a grid of crop candi-
dates (Zeng et al. 2019) and compute the binary class pre-
diction scores.

The pseudo-labels used to train GenCrop-R are binary and
therefore lack ranking information, such as for intermediate
quality crops. As a result, performance on the GAICD (Zeng
et al. 2019) test set is poor compared to alternatives that train
with direct supervision from GAICD (see Tab. 4).

C.4 Baseline Cropping Methods

We compare GenCrop primarily to two supervised methods,
HCIC (Zhang et al. 2022) and CACNet (Hong et al. 2021).
While numerous supervised image cropping methods exist,
few have released code and models. We train HCIC using
their public code, on both GAICD (Zeng et al. 2019) and
CPC (Wei et al. 2018), using their default hyper-parameters.
We use the epochs with the best test SRCC for GAICD
trained models and best test IoU on FCDB (Chen et al.
2017a) for CPC trained models. While HCIC’s main contri-
bution is the human-centric image cropping task, its supple-
mental materials show that it is also at or near state-of-the-
art on generic images (Zhang et al. 2022), due to training on
all of CPC. For CACNet (Hong et al. 2021), we use an un-
official implementation and model weights on GitHub since
that is the only one available.

We implemented VFN (Chen et al. 2017b) following the
example in its official repository. Since GenCrop receives
subject information in the form of a concatenated mask, we
also provide the subject mask to VEN. In our training, we
follow the ranking-pair mining procedure described by the
VEN paper. The VEN paper refers to their approach as unsu-
pervised, but the approach can more accurately be described
as weakly-supervised since, like GenCrop, the goal of their
approach is to learn from professional, high-quality images.
We note that HCIC (Zhang et al. 2022) also trains VFN on
CPC and GAICD.
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