
Ravel: Programming IoT Applications as Distributed
Models, Views, and Controllers

Laurynas Riliskis, James Hong & Philip Levis
Stanford University

lauril@cs.stanford.edu

ABSTRACT
The embedded sensor networks are a promising technology
to improve our life with home and industrial automation,
health monitoring, and sensing and actuation in agriculture.
Fitness trackers, thermostats, door locks are just a few ex-
amples of Internet of Things that have already become part
of our everyday life. Despite advances in sensors, micro-
controllers, signal processing, networking and programming
languages, developing an Internet of Things application is a
laborious task.

Many of these complex distributed systems share a 3-tier
architecture consisting of embedded nodes, gateways that
connect an embedded network to the wider Internet and
data services in servers or the cloud. Yet the IoT applica-
tions are developed for each tier separately. Consequently,
the developer needs to amalgamate these distinct applica-
tions together.

This paper proposes a novel approach for programming
applications across 3-tiers using a distributed extension of
the Model-View-Controller architecture. We add new prim-
itive: a space - that contains properties and implementation
of a particular tier.

Writing applications in this architecture affords numerous
advantages: automatic model synchronization, data trans-
port, and energy efficiency.

Categories and Subject Descriptors
C.2.4 [Computer-Communication Networks]: Distributed
Systems; D.1.0 [Software]: Programming Techniques; Gen-
eral

Keywords
Internet of Things; Programming Distributed System; Pro-
gramming Paradigm; Wireless Sensor Network

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from Permissions@acm.org.
IoT-App’15, November 1, 2015, Seoul, South Korea.
c© 2015 ACM. ISBN ACM 978-1-4503-3838-7/15/11.̇.$15.00.

DOI: http://dx.doi.org/10.1145/2820975.2820977.

Figure 1: An example of common IoT architecture.

1. INTRODUCTION
The Internet of Things (IoT) encompasses a huge variety

of applications, ranging from fitness trackers, home automa-
tion to health monitoring, sensing and actuation in agricul-
tural environments. These ultra-low-power networks bridge
to the larger Internet through gateway: a mobile phone or
a device running embedded Linux. Back-end servers in the
cloud store data transmitted by gateways and render it to
users via web interfaces.

A subset of these applications operates across three tiers
of devices as shown in Fig. 1: embedded, gateway and cloud.
Each tier has different storage, computation, energy resources
and diverse user interfaces (e.g. a blink sequence and tap-
ping input on Fitbit or a web page). One or more low-power
embedded devices sense and actuate with the physical en-
vironment. These devices can be personal and mobile (e.g.
smart watch), shared and stationary (e.g. door lock), or
some mixture of the two. Embedded sensing devices of-
ten share a similar set of challenges and limitations, in-
cluding ultra-low power operation, low duty cycles, sensing,
actuation, and low-power personal area wireless protocols
(802.15.4 or Bluetooth).

IoT apps must manage energy carefully, deal with delay-
tolerant networking, run on three different processor archi-
tectures and three different operating systems. Changing a
small detail in one part of the application (e.g. the format of
a data value) requires propagating this change across many
languages and components that run on each tier.

Programming such sensor network applications has always
been difficult. While there has been tremendous progress in
operating systems [13, 4], programming models [11, 5], and

1

networking for low-power embedded devices, these advances
are only part of a much larger puzzle – an IoT programming
model consisting of many different types of devices.

Despite these efforts, each tier is developed separately:
converting data between different schemas manually. We
notice that Model-View-Controller is a software architec-
ture that dominates modern web application development in
frameworks such as Rails, Django, and Meteor. Many desk-
top applications follow such an architecture too (XEmacs:
synchronize multiple windows with the same buffer). As a
result, MVC’s abstractions and approaches are well under-
stood by the majority of developers today. Therefore we
ask, how can we make the development of IoT appli-
cations as easy as the modern web?

This paper presents Ravel, a programming framework for
IoT applications following the three-tier architecture. A
Ravel developer writes code in a single language (in our im-
plementation, Python) across all tiers of the system. First,
an application is written with a Distributed Model-View-
Controller architecture. Then, the developer assigns the
models and views across spaces– the devices that comprise
the three-tier application. Finally, Ravel generates static
code for each of the spaces that can be compiled and de-
ployed to the devices.

Ravel’s programming abstractions allow a developer to
take a complex, distributed sensor network application and
write it as a series of models with views and controllers.
Ravel fills in all of the intervening pieces, such as network
protocols that synchronize models across devices, storage,
and scheduling. The high-level description of the system is
simultaneously concise and semantically expressive.

This paper has three contributions: (1) A novel Distributed
Model-View-Controller programming paradigm for IoT ap-
plications that follow a 3-tier architecture. (2) The con-
cept of spaces, which allow a programmer to distribute the
data processing pipeline across multiple devices, with the
Ravel automatically handling data synchronization, encryp-
tion, and other networking across spaces. (3) An implemen-
tation and an evaluation of the framework based on how well
the system enables simple, high-level programming of dis-
tributed applications with little overhead over native, hand-
written implementations.

Paper organization follow. Section 2 provides an overview
of Ravel, that is detailed in Section 3. Section 4 describes
the evaluation of the framework. Section 5 gives an overview
of programming paradigms for IoT and Section 6 concludes
this article.

2. SYSTEM OVERVIEW
A Ravel application is a set of models, views, and con-

trollers, distributed across different devices. Ravel’s model
define the data types that an application collects, processes,
stores, and displays to a user. In web frameworks, a model is
typically bound to a particular database table: they repre-
sent a schema and an instance of that schema. Ravel appli-
cations are distributed; thus, a model has multiple instances
across different spaces; each with a to space specific schema.
For example, the model instance on the embedded device
is represented as a Cstruct, on the Android gateway as a
class, and in the backend as a table. Each instance of the
model will have distinct storage sizes characteristic to the
space. An embedded device, smartphone, and a backend
might have the same model of heart rate. However, each of

the model instances would only store a subset of the data
(e.g. the embedded device current heart rate, mobile device
the latest hour, while the server maintains the full history).

Models can be durable or volatile, and apply data opti-
mizations (e.g., allocation, caching, compression) appropri-
ate to the limited resources of embedded and gateway de-
vices. It is the controller of the model that create records,
moves data from in-memory buffers to flash, apply data op-
timization, move and convert data between schemas and
spaces.

Models and controllers are device-independent, but the
views are space-specific: the interface of a shower sensor
with a few LEDs is different from that of a mobile phone
or web application. Ravel provides unified API to fetch the
data from models and pass it to a template implementing
the view for a particular space.

A space is a set of rules, templates, and code snippets
for a particular platform (e.g., an Android phone, a TinyOS
sensor, a Django server). For example, a TinyOS space has
information about nesC data types (such as nx uint16 t),
uses ActiveMessages, runs transforms within tasks, and uses
TinyOS’s storage component for durable models. Rather
than individually write code for each tier, Ravel develop-
ers assign same models to spaces and adds views to them.
Each space specification has all the logic necessary to trans-
late Ravel application code into the code for that particular
space. For some spaces, such as Python-based Django, this
translation is straightforward because Ravel is implemented
in Python, the developer writes an application similarly to
the Django framework. For more constrained environments,
such as TinyOS/nesC or Contiki, this translation is more
complex. Ravel generates the code from space templates
and code snippets: by mapping data types from internal to
the particular space types and using that to create buffers,
communication routines, initialize the main function.

2.1 Water Saving Application
To ground the above concepts in a concrete example, we

develop a sensor network application. The application’s goal
is to collect fine-grained water use data on the students living
in a large dormitory. Currently, the university only knows
how much the entire building uses water daily. Without
finer-grained data, it is hard to formulate policies to reduce
water use (a tremendous concern in California, given the
severe drought).

We mount a sensor between the water pipe from the wall
and the fixture to monitor water flow and temperature from
the showers and sinks in the dormitories. The sensor has
a rechargeable battery that is charged by harvesting en-
ergy from water flow using a small turbine. The sensor de-
vice communicates using Bluetooth Low Energy (BLE) to
a smartphone gateway (either Android and iOS). When the
gateway is close to a sensor, the application on the smart-
phone connects to and requests data from the sensor. The
gateway stores this data and asynchronously sends it to a
python-service (Django) running in the cloud. The sensor
encrypts the data that is decrypted only on the cloud. Sen-
sors hold onto records until they receive an end-to-end ac-
knowledgment from the cloud.

3. PROGRAMMING WITH RAVEL
Fig. 2 shows Water Sensing Application in Ravel’s prim-

itives. The main data flow (shown in blue) goes from two

2

Figure 2: An application spanning three tiers of eMbeded-
Gateway-Cloud architecture represented in Ravel primitives.

sources (the temperature and flow sensors) to the sink (the
cloud with database) via Measurement model. We distin-
guished notation of source and sink models because they
are space specific (they represent a particular hardware or
software) and cannot be moved. For example source model
for temperature is a sensor on the embedded device. Hence,
moving it to the gateway would result in a completely dif-
ferent model.

The Measurement model is distributed over all three tiers,
thus Ravel will initialize needed storage and communication
links to synchronize data between the spaces. The green flow
shows a Average Temperature model with a view; Ravel cre-
ates this model from the Measurement model in the gateway
space. Because Average Temperature is in only one space, it
does not need synchronization.

When the developer runs Ravel’s build command, the
compiler will generate static code for each of the tiers: in-
cluding, buffering, storage and communication protocols.
The resulting static code can be edited or directly compiled
and deployed. The resulting application will read sensors,
transmits data to the gateway, show the mean values and
forward the measurements to the cloud for storage.

3.1 Models
Essentially, each Ravel model is s set of fields that repre-

sents data. We use metaprogramming to overrides standard
class initialization and add necessary fields for the system
meta information, class signatures and convenience function-
ality. For example, each model will get automatic fields such
as node id, timestamp, sequence number. The distributed
models can be either best-effort or reliable. In the reliable
case, a model synchronizing data from the embedded space
to the cloud space will not delete a record until it receives
an end-to-end acknowledgment from the cloud.

The fields are represented by Ravel’s data type (such as
Integer, Float, TimeStamp, and so on) that compiler maps
to the type used in each space. For example, if we decide
to represent sensor reading as uint32 t rather then uint16 t
the change needs to be performed only in one place – Ravel
will propagate this change to all three tiers. Such an ap-
proach is tremendously useful when models span multiple
spaces: instead of having to redefine the schema for each
device and system, the developer only needs to maintain
one specification. Additionally, a holistic data types prevent
one of the most common causes of security vulnerabilities:
wrong type-casting [12].

Ravel automatically synchronizes model instance between
spaces when networking is available. Prior that, records are

stored either in memory or in flash depending on defined
durability. Because changes to the model can occur on any
of tiers while being disconnected, the framework enforces
directed data flow: records appearing earlier in the flow are
synchronized to later models but not vice-versa.

Ravel models support differing data durability require-
ments between applications and models within the same de-
vice tier. The standard mode is durable, persisting data on
flash while the light-weight mode only keeps a RAM buffer.
In the latter mode, data may be lost to a system reboot or
overflowed buffer.

3.2 Views and Controllers
Views present an external interface (a GUI, JSON) for a

set of records drawn from one or more models. View speci-
fications are solely device (and therefore space) specific. On
an iOS gateway, the interface might be a native applica-
tion; in the cloud it might be a web page or JSON data;
on the embedded device it might be a small LED or LCD.
For this reason, views are the one device-specific component
in Ravel. The framework provides a clean set of interfaces
that translate data into local representations for feeding into
a view.

Controllers respond to pushes from other controllers and
interface requests (such as displaying a record). They read
and modify their models and invoke views. Ravel controllers
extend standard MVC by sending data across spaces; con-
trollers typically do not modify or compute on data as this is
done by the model. The developer has the flexibility to spec-
ify option such as value update time, sensor reading interval,
timeout. Ravel generates controllers as series of timers and
interrupt handlers. For example, the temperature sensor
would be periodically read, but the data transmission would
be contingent upon an available connection.

3.3 Spaces and Templates
Ravel spaces describe the properties and technical de-

tails of underlying devices. Technically, a space contains
file, function, Makefile and include templates together with
software components. Ravel uses templates and software
components to assemble controllers, models and views that
map them to the underlying OS native types in a partic-
ular language. Internally, Ravel builds a graph with the
data types and structure particular to space’s programming
system. For example, a temperature model component will
contain initialization function, includes, build and linking
dependencies. Also a controller to read the sensor and write
to the Measurement – a model in our example.

Ravel uses a templating approach similar to that of pop-
ular modern web frameworks. To reduce runtime overhead
Ravel generates static code before deployment that allows
to inspect and modify code manually.

4. EVALUATION
This section describes Ravel evaluation. Firstly, we exam-

ine implicit benefits of developing IoT application in the Dis-
tributed Model-View-Controller in a data flow architecture.
Secondly, using previously described the water saving appli-
cation as the example, we to compare the required workload
(Lines of Code, LoC) to implement the sensor application
manually in C to one written in Python using Ravel.

A team of 4 Ph.D. students, one undergraduate, and one
post-doctoral researcher developed this application over a

3

period of 6 months, encountering numerous engineering chal-
lenges in the process. For example, Android and iOS have
very different Bluetooth interfaces (and programming lan-
guages), forcing completely separate gateway implementa-
tions. Developers for each component of the system must
decide on data representations and bridge those represen-
tations across programming languages and architectures: C
to Swift, C to Java, Swift to Python, and Java to Python.
Moving functionality across devices (compression or encryp-
tion) requires entirely new, and separate implementations,
and changing the placement of data processing requires new
data formats as well as marshaling code. As a result, early
design decisions made about how to distribute the applica-
tion across devices are effectively set in stone, preventing us
from making several desired changes before deployment.

4.1 Benefits of the Single Data Model
Having one single data model spanning all three tiers is

tremendously helpful. In our example application the data is
(1) read from a sensor as uint32t, (2) stored in a buffer (as a
C − struct containing timestamp uint32t, sequence number
and node id both uint16t), (3) moved to the durable medium
(flash). Upon available connection, a record is read from
the flash drive, (4) converted to a radio compatible buffer
(uint8t byte array) and transmitted. When the gateway
receives the data (uint8t byte array), the application (5)
cast byte array to the expected data types (two uint32t and
two uint16t unmangled in the right order). Stored them in
(6) typed class and (7) writes to a durable storage. Finally,
the data is transmitted to the backend server (8); where it is
cast from text/JSON to the appropriate type (9) and stored
in the database fields (10).

In Ravel changing data type for from 16 to 32 bits is
achieved by one line of code. Whereas manually, it would
require changes in ten different places, on three different de-
vices, in three different programming languages as described
above. Additionally, such change may require splitting data
packets on embedded device (because of the limited radio
message size) which would complicate reliable synchroniza-
tion further.

Another notable advantage of Ravel is the ability to define
valid ranges or checks for data: check temperature between
0 and 100C, else alert. Alternatively, monitor invariants
that data must satisfy: verify that battery percent increased
while water flow is active. To apply such sanity checks and
add testing code to our non-Ravel implementation across all
three-tier manually (via hacks) has led to numerous bugs as
parts of the system were evolving separately. In Ravel, this is
automated and does not require additional effort, leading to
a system that is not only easier for developers to understand,
but also to debug, maintain and detect errors.

4.2 Model Synchronization and Durability
A traditional sensor application often periodically streams

data to the permanent gateway. Hence, storing data values
on the device is optional, which simplifies the application.
In our scenario, we encountered two challenges with such
approach: firstly, BLE devices have short communication
range thus deploying gateway in each shower would increase
cost. Secondly, to connect these gateways to the electrical
outlet requires special casings and certification for electron-
ics in wet environments, which made deployment more ex-
pensive and complicated. Hence, we decided to crowdsource

Application O1 O3 Os Ravel LoC (C)

Hand written 20308 21936 17180 - 1025
Ravel 13100 13328 10300 80 1201

Table 1: Size of water saving application using Ravel as
well as the hand-written implementation, both in bytes of
compiled code and lines of source code.

data gathering that requires durable models, and their syn-
chronization.

Ravel model has optional meta class parameters that al-
lows specifying details for synchronization and durability.
Enabling the durability flag will automatically initialize flash
on embedded device, store data there and read it for trans-
mission. On the gateway, for instance, it would create a
database (for example SQLite on Android). Enabled syn-
chronization produces necessary buffers and controllers to
move the data from the embedded device to the gateway
and further to the cloud. For example, MeanTemperature
model is only stored on the gateway to store it on the cloud
the developer needs to implement database storage on the
cloud and communication handlers. A robustly and scalable
implementation would require tens to hundreds of lines in
Python, Java or C/C++ while inRavel it is sufficient with
only one.

4.3 Complete Application
In our comparison, the Ravel developer required to write

80 lines of code for the entire application. That resulted
in generated 1201 lines of C code for the embedded device,
2393 for Android (1470 XML, 908 Java and 15 IDL), and
136 Python for Django. That is fewer than the hand written
version, but this difference is not significant: it is mostly due
to how Ravel partitions functions and performs local variable
initialization.

When compiled, the Ravel version uses significantly less
code space than the hand-written one, namely 20308 B vs.
13100B as detailed in Tab. 1. The difference took us by
surprise - given the somewhat equal lines of code, we would
expect somewhat equal code size. The larger code size in the
hand-written version is because of its build process: there
were some unnecessary object files included in the final ex-
ecutable, left over from prior versions of the application.
Once these were removed and the same compilation options
were used, the hand-written version had roughly equal code
size to the Ravel one. However, this points at the bene-
fit of using a framework, which can automatically minimize
not only code but also use toolchains intelligently and in an
optimizing way. Ravel helps avoid many common mistakes
that only many years of practice and experience prevent.

Noticeably, this evaluation is indicative because of LoC
as a main metric. However, it is evident that the time to
develop applications in Ravel is significantly shorter. Our
approach is more feasible for applications intended for in-
dividual use rather than mission critical cyber-physical sys-
tems.

5. RELATED WORK
SQL-like query interfaces [15, 16, 2] enable data retrieval

from a distributed sensor network as if it were a database.
A single query can retrieve data from multiple nodes in the
network. Users or applications query data from a heteroge-
neous sensor network via the gateway, retrieving results in

4

an endpoint. For example Cougar [25] adds a query proxy
layer on top of the application’s runtime. The burden to
write the complex code for each tier of the application: in-
dividual nodes, gateway, and backend system – is on the
developer.

Rather than sending queries, macroprograming focuses on
writing a high-level app for groups of nodes [1, 18, 19, 14, 3,
8]. The paradigm hides communication, storage, and run-
time complexity allowing the developer to focus on the appli-
cation’s data and logic. For example, EcoCast [24] is an in-
teractive object-oriented macroprograming framework. The
developer writes Python code that is later compiled into C
code and distributed to nodes. Similar to an SQL-like ap-
proach, these systems assume that a particular OS, libraries
the run-time is available on the node. Macroprogramming
systems do not address cross-tier programming issues: the
developer must manually program and change the gateway
and cloud, ensuring that the data schemas are compatible
after the changes in node applications.

Numerous systems have proposed to simplify development
using data streams, which enable the developer to concen-
trate on data models and information flow rather than low-
level programming [17]. These approaches allow users to
specify computation on existing data flows and deal with a
variety of particular type of stream. For example, MISSA
[10] implements a middleware for provisioning generic stream-
based services, while SPITFIRE [20] focuses on enabling
access to the data from connected sensors as a semantic
web. Yet, these approaches assume either a secondary de-
veloper [23] (who implements the system according to the
specification) or the existence of the enterprise infrastruc-
ture with deployed code for each tier.

Other systems, for example, SNACK [7], propose a config-
uration language, with a library and compiler for the devel-
opment of Wireless Sensor Networks. Instead of creating a
new language, WuKong [21, 22] uses a flow-based program-
ming paradigm in a familiar Java environment. The devel-
oper constructs an application from logical components in
WuKong’s library and later distributes the application as
binary executable for embedded Java VM.

To address three-tier programming, Exemplar [9] allows
the developer to demonstrate the desired physical interac-
tion and bind it to a resulting action. The system ana-
lyzes the sensor traces and classifies different interactions
(tilting a head left or right). Similarly, Fabryq [6] allows
a developer to write an embedded-gateway-cloud applica-
tion as a centralized Javascript application that interacts
with the cloud and embedded device through RPC function
calls. These and many other techniques allow a developer to
explore quickly and prototype an MGC application. How-
ever, they lack deployability: the implementation is tied to a
particular hardware that supports the subset scripting lan-
guage. Also, the primary goal is prototyping. Thus, there is
no way to transition an Exemplar or Fabryq prototype to a
working system (scale it, move to different hardware, or add
new sensors or actuators) besides developing it again from
scratch.

The exiting programming paradigms have a set of lim-
itations for the IoT. Firstly: existing frameworks assume
access to the data (e.g. nodes) through a central always-
connected gateway. Secondly: they require that the data
schemas, communication protocols, other components and
data types are static in the different tiers of the architec-

ture. For example, SQL-like programming assumes that the
system output will have correct and homogeneous data types
or that they will be cast correctly even without reprogram-
ming. Thirdly: the newly uploaded programs, scripts or
executed queries have to be “standardized” or they will re-
quire the gateway and cloud to be reprogrammed, which is
not addressed by these systems. Finally, these systems do
not address application requirements for user interaction,
networked and distributed functionality at each device tier:
embedded, gateway, and cloud.

In contrast, Ravel addresses current limitations. Changes
in Ravel model are propagated to the code for each of three
tiers. Ravel generates static code from templates for each
tier in the architecture. Firstly this reduces dependencies on
a particular OS, libraries or runtimes. Secondly, it permits
the developer to implement and use any existing system and
its desired functionality. Finally, Ravel retains the benefits
of developing a single application for a three-tier architec-
ture.

6. CONCLUSIONS
This paper presented Ravel, a novel programming frame-

work allowing developers to program 3-tier architecture ex-
plicitly in a manner very similar to web applications today,
via models, views, and controllers. Ravel introduces concept
of space, which bind particular models, controllers and views
to a specific devices. The networking complexities between
devices are hidden by the distributed model that automati-
cally synchronizes whenever possible.

Programming an entire embedded sensor network in a
high-level language has been a long-term goal of sensor net-
work research. Ravel suggests that perhaps we should con-
sider programming at an even larger scale, encompassing the
gateways and cloud that are part of almost every applica-
tion.

Acknowledgement
This work was supported, in part, by generous gifts from Er-
icsson, VMware, SAP, and Panasonic, as well as the Okawa
Foundation and the Wallenberg Foundation. This material
is based upon work supported by the National Science Foun-
dation under Grant No. 1505728 (CNS: CPS Security) as
well as the Intel Corporation.

7. REFERENCES
[1] A. Awan, S. Jagannathan, and A. Grama.

Macroprogramming heterogeneous sensor networks
using cosmos. In Proceedings of the 2Nd ACM
SIGOPS/EuroSys European Conference on Computer
Systems 2007, EuroSys ’07, pages 159–172, New York,
NY, USA, 2007. ACM.

[2] P. Bonnet, J. Gehrke, and P. Seshadri. Towards sensor
database systems. In K.-L. Tan, M. Franklin, and J.-S.
Lui, editors, Mobile Data Management, volume 1987
of Lecture Notes in Computer Science, pages 3–14.
Springer Berlin Heidelberg, 2001.

[3] A. Boulis, C.-C. Han, and M. B. Srivastava. Design
and implementation of a framework for efficient and
programmable sensor networks. In Proceedings of the
1st International Conference on Mobile Systems,
Applications and Services, MobiSys ’03, pages
187–200, New York, NY, USA, 2003. ACM.

5

[4] A. Dunkels, B. Gronvall, and T. Voigt. Contiki-a
lightweight and flexible operating system for tiny
networked sensors. In Local Computer Networks, 2004.
29th Annual IEEE International Conference on, pages
455–462. IEEE, 2004.

[5] A. Dunkels, O. Schmidt, T. Voigt, and M. Ali.
Protothreads: simplifying event-driven programming
of memory-constrained embedded systems. In
Proceedings of the 4th international conference on
Embedded networked sensor systems, pages 29–42.
Acm, 2006.

[6] M. Etemadi, W. McGrath, B. Hartmann, and S. Roy.
Fabryq: Using phones as smart proxies to control
wearable devices from the web. 2014.

[7] B. Greenstein, E. Kohler, and D. Estrin. A sensor
network application construction kit (snack). In
Proceedings of the 2Nd International Conference on
Embedded Networked Sensor Systems, SenSys ’04,
pages 69–80, New York, NY, USA, 2004. ACM.

[8] R. Gummadi, O. Gnawali, and R. Govindan.
Macro-programming wireless sensor networks using
kairos. In V. Prasanna, S. Iyengar, P. Spirakis, and
M. Welsh, editors, Distributed Computing in Sensor
Systems, volume 3560 of Lecture Notes in Computer
Science, pages 126–140. Springer Berlin Heidelberg,
2005.

[9] B. Hartmann, L. Abdulla, M. Mittal, and S. R.
Klemmer. Authoring sensor-based interactions by
demonstration with direct manipulation and pattern
recognition. In Proceedings of the SIGCHI Conference
on Human Factors in Computing Systems, CHI ’07,
pages 145–154, New York, NY, USA, 2007. ACM.

[10] S. Kang, Y. Lee, S. Ihm, S. Park, S.-M. Kim, and
J. Song. Design and implementation of a middleware
for development and provision of stream-based
services. In Computer Software and Applications
Conference (COMPSAC), 2010 IEEE 34th Annual,
pages 92–100. IEEE, 2010.

[11] K. Klues, C.-J. M. Liang, J. Paek,
R. Musaloiu-Elefteri, P. Levis, A. Terzis, and
R. Govindan. Tosthreads: thread-safe and
non-invasive preemption in tinyos. In SenSys,
volume 9, pages 127–140, 2009.

[12] B. Lee, C. Song, T. Kim, and W. Lee. Type casting
verification: Stopping an emerging attack vector. In
24th USENIX Security Symposium (USENIX Security
15), pages 81–96, Washington, D.C., Aug. 2015.
USENIX Association.

[13] P. Levis, S. Madden, J. Polastre, R. Szewczyk,
K. Whitehouse, A. Woo, D. Gay, J. Hill, M. Welsh,
E. Brewer, et al. Tinyos: An operating system for
sensor networks. In Ambient intelligence, pages
115–148. Springer, 2005.

[14] L. Luo, T. F. Abdelzaher, T. He, and J. A. Stankovic.
Envirosuite: An environmentally immersive
programming framework for sensor networks. ACM
Trans. Embed. Comput. Syst., 5(3):543–576, Aug.
2006.

[15] S. Madden, M. J. Franklin, J. M. Hellerstein, and
W. Hong. Tag: A tiny aggregation service for ad-hoc

sensor networks. SIGOPS Oper. Syst. Rev.,
36(SI):131–146, Dec. 2002.

[16] S. R. Madden, M. J. Franklin, J. M. Hellerstein, and
W. Hong. Tinydb: an acquisitional query processing
system for sensor networks. ACM Transactions on
database systems (TODS), 30(1):122–173, 2005.

[17] R. Newton and M. Welsh. Region streams: Functional
macroprogramming for sensor networks. In
Proceeedings of the 1st International Workshop on
Data Management for Sensor Networks: In
Conjunction with VLDB 2004, DMSN ’04, pages
78–87, New York, NY, USA, 2004. ACM.

[18] A. Pathak and M. K. Gowda. Srijan: A graphical
toolkit for sensor network macroprogramming. In
Proceedings of the the 7th Joint Meeting of the
European Software Engineering Conference and the
ACM SIGSOFT Symposium on The Foundations of
Software Engineering, ESEC/FSE ’09, pages 301–302,
New York, NY, USA, 2009. ACM.

[19] A. Pathak, L. Mottola, A. Bakshi, V. Prasanna, and
G. Picco. Expressing sensor network interaction
patterns using data-driven macroprogramming. In
Pervasive Computing and Communications
Workshops, 2007. PerCom Workshops ’07. Fifth
Annual IEEE International Conference on, pages
255–260, March 2007.

[20] D. Pfisterer, K. Romer, D. Bimschas, O. Kleine,

R. Mietz, C. Truong, H. Hasemann, A. KroÌ́Lller,
M. Pagel, M. Hauswirth, M. Karnstedt, M. Leggieri,
A. Passant, and R. Richardson. Spitfire: toward a
semantic web of things. Communications Magazine,
IEEE, 49(11):40–48, November 2011.

[21] N. Reijers, K.-J. Lin, Y.-C. Wang, C.-S. Shih, and
J. Y. Hsu. Design of an intelligent middleware for
flexible sensor configuration in m2m systems. In
SENSORNETS, pages 41–46, 2013.

[22] N. Reijers, Y.-C. Wang, C.-S. Shih, J. Hsu, and K.-J.
Lin. Building intelligent middleware for large scale cps
systems. In Service-Oriented Computing and
Applications (SOCA), 2011 IEEE International
Conference on, pages 1–4, Dec 2011.

[23] S. Tranquillini, P. SpieÃ§, F. Daniel, S. Karnouskos,
F. Casati, N. Oertel, L. Mottola, F. Oppermann,
G. Picco, K. RÃűmer, and T. Voigt. Process-based
design and integration of wireless sensor network
applications. In A. Barros, A. Gal, and E. Kindler,
editors, Business Process Management, volume 7481 of
Lecture Notes in Computer Science, pages 134–149.
Springer Berlin Heidelberg, 2012.

[24] Y.-H. Tu, Y.-C. Li, T.-C. Chien, and P. Chou.
Ecocast: Interactive, object-oriented
macroprogramming for networks of ultra-compact
wireless sensor nodes. In Information Processing in
Sensor Networks (IPSN), 2011 10th International
Conference on, pages 366–377, April 2011.

[25] Y. Yao and J. Gehrke. The cougar approach to
in-network query processing in sensor networks.
SIGMOD Rec., 31(3):9–18, Sept. 2002.

6

