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A Implementation Details for E2E-Spot

A.1 Spatial-Temporal Feature Extractor, F

As described in § 3, our feature extractor is a standard RegNet-Y [19] with Gate
Shift Modules [21] (GSM) inserted. GSM is applied at each residual block, to 1

4
of the channels, rounded up to the nearest multiple of 4. RegNet-Y 200MF and
800MF produce spatially-pooled features of dimension 368 and 768 respectively.

We choose RegNet-Y [19] over the more commonly used ResNet [12] family of
2D CNNs because the former is more recent and compact (RegNet-Y 200MF has
3.2M parameters vs. 11.7M parameters for ResNet-18), while exhibiting generally
better performance on image classification benchmarks [24]. E2E-Spot, however,
can be implemented with any 2D CNN architecture.

A.2 Long-term Temporal Reasoning Module, G

G provides temporal reasoning on dense feature vectors, following the spatial
pooling layer of F . The details of G are given in the paper in § 3.2. Here, we
provide details for the additional variations of E2E-Spot used in § 5.4.

Deeper GRU increases the number of GRU layers to 3. MS-TCN and AS-
Former are described in § B.1.

GRU* takes multiple 1-layer GRUs at different temporal granularities, in
addition to the 1-layer GRU, to more directly aggregate information across wider
contexts. We use two temporal scales, 4 and 16, requiring two additional GRUs.
Each scale defines a temporal down-sampling of the clip length by a factor of the
scale, S. For each scale, all output features are first fed to a fully connected layer
and ReLU. Then, the sequence of length N is divided into ⌈N

S ⌉ non-overlapping

windows, and max-pooling is performed in each window. The ⌈N
S ⌉ sequence is

processed by the scale-specific GRU. Finally, the outputs of each GRU, at each
time scale, are up-sampled by repetition back to the full clip length N and
concatenated for each time step t.

While these experiments do not cover the full breadth of architectures and
settings available, we note that we did not observe major performance gains over
the 1-layer GRU in applying these alternatives alongside end-to-end learning.
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A.3 Training Configuration

We train E2E-Spot using 100 frame long clips by default and a batch size of 8
clips. Batches are formed by randomly sampling clips from the training videos.
We group every 625 training steps into a training cycle (i.e., a pseudo-epoch
of 500K frames). A single cycle runs in approximately 8.5 and 14 minutes on
a single A5000 GPU [17] for the 200MF and 800MF variants, respectively. All
variations of E2E-Spot are trained for 50 cycles on the Tennis, Figure Skating,
and FineDiving datasets. We train the 200MF model for 100 cycles and the
800MF model for 150 cycles on FineGym and SoccerNet-v2, due to the larger
dataset sizes (see § D). Training is performed with AdamW [16], setting a base
learning rate of 10−3, with 3 linear warmup cycles followed by cosine decay [15].

Data Augmentations. We randomly apply color jitter, Gaussian blur, and
mixup [29] during training. On Tennis, Figure Skating, and FineGym, we also
randomly crop the 398× 224 frames to 224× 224 pixels. This crop only affects
the width dimension, as cropping the height dimension can lead to precise events
falling outside the visible field (e.g., the tennis court and player span the vertical
dimension). For FineDiving [25], we use the frames extracted by the original
authors (256 pixels in the vertical dimension) and random crops of 224 × 224
pixels. Finally, for SoccerNet-v2, we do not use random cropping because context
such as the goal or the field boundary are often at the periphery of the frame.

For Figure Skating only (FS-Perf and FS-Comp), we use label dilation of ±1
frames due to the very large imbalance between events and background frames
(see § D.2). Label dilation is beneficial on Figure Skating for both E2E-Spot and
the baselines (see § C.2). Note that label dilation is not used during testing.

Non-maximum Suppression. We evaluated the model predictions with and
without non-maximum suppression (NMS). For the temporally precise datasets,
we used a window of±1 frames whereas we use±2 frames at 2 FPS for SoccerNet-
v2. The efficacy of NMS in the temporally precise setting depends on the frame
level tolerance, dataset, and model (see experiments in § C.3), so the decision to
apply NMS in practice should be made with application and task requirements
in mind.

A.4 Optical Flow Extraction, for Additional Experiments

We use optical flow extracted by RAFT [22] for the additional 2-stream experi-
ments that we described in § 5.4. During preprocessing, we subtract the median
flow value for each frame and clamp to a range of [−20,+20] pixels.

B Implementation Details for Baselines

We adapt a number of published architectures from the action segmentation
(TAS), detection (TAD), and spotting literature as baselines for temporally pre-
cise spotting and provide their key implementation details here.
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B.1 Models

TCN and MS-TCN. We adapt the code from Farha et al. [9], using dilated
temporal convolution networks. Multiple stages typically improves results over a
single stage TCN. We use 3 TCN stages for our MS-TCN baselines and a depth
of 5 layers for each stage. Each layer has dimension of 256. Per-frame predictions
are made with a fully connected layer that maps from 256 to K + 1.

GRU. We use a bidirectional GRU [3] with 5 layers and a dimension H of 128.
Per-frame predictions are made with a fully connected layer, from 2H to K +1.

ASFormer. We use code and settings from the implementation by Yi et al. [27].

GCN. We use the GCNeXt block architecture proposed by Xu et al. [26], which
produces a 256 dimensional feature encoding for each frame. Per-frame predic-
tions are made with a fully connected layer mapping from 256 to K + 1.

StridedTransformer. We implement a transformer [18] that operates on a
window of per-frame features [30]. The model takes a consecutive clip of 31
features and positional encodings, and it predicts whether the center frame is
one of the K events or not.

NetVLAD++ [10] is used similarly to the transformer described above. We
observe on precise spotting tasks that NetVLAD++ often fails to overcome the
class imbalance between foreground events and background frames. Reducing
window size from 31 to 7 frames improves performance slightly, but overall per-
formance remains poor and the StridedTransformer described above performs
significantly better (see § C.1).

VC-Spot is a end-to-end learned video classification baseline, which, given a
clip of 15 consecutive RGB frames, predicts whether the middle frame is an
event. We use the same RegNet-Y 200MF (with GSM) CNN backbone as E2E-
Spot. Training VC-Spot using batches containing randomly sampled clips fails
to overcome the large foreground / background frame imbalance. This is a chal-
lenging problem since a window that contains a temporally precise event as its
middle frame differs from its neighbors by only one frame in time. To ameliorate
this, we form batches with densely overlapped clips (4 sequentially) in addition
to the batch size of 8.

B.2 Pre-trained Features

We test I3D [2] and MViT base (MViT-B) [8] features trained on Kinetics-
400 [14], without fine-tuning. I3D features are extracted following the example
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of Farha et al. [9], with RGB and flow. MViT-B features use the 16x4 model
in PyTorchVideo [7]. Performance with these features is poor — far below fine-
tuned features such as TSP [1] (see Table C1 and C2). Due to the high cost of
feature extraction on large datasets with I3D and the poor spotting performance
of downstream models trained using I3D features, we only extract MViT-B [8]
features for FineDiving and FineGym.

B.3 Fine-tuned Features

We test two fine-tuning strategies that use video clip classification in the target
domain (i.e., the precise spotting dataset) as a fine-tuning step for temporal
localization tasks.

Temporally Sensitive Pretraining (TSP). We use code from Alwassel et
al. [1], which pre-trains a R(2+1)D-34 [23] model to encode spatial-temporal
features. The model is first initialized with weights from a model trained on
Kinetics-400 [14]. During fine-tuning, we use a clip length of 12 frames. For
the pre-trained global video feature (GVF), we use pre-extracted MViT-B [8]
features (from § B.2) as these serve a similar function to the frozen GVF in the
original implementation. We optimize the model using TSP until its validation
loss and accuracy converges.

(K + 1)-VC pre-trains a RegNet-Y 200MF with GSM on a standard video
classification task. It is included to demonstrate a simpler fine-tuning baseline
than TSP, using a feature extractor of comparable complexity and architecture
to the one that we selected for E2E-Spot.

We initialize the RegNet-Y backbone with pre-trained weights learned on
ImageNet-1K [6]. For fine-tuning, we use a clip length of 7 frames. A small clip
length is selected because the goal is to learn a localized, per-frame feature;
downstream models for spotting will receive a long sequence of these features.
Clips of the K foreground classes contain a foreground event within a half clip
length window in the clip center while background class clips do not. We sample
background clips randomly with 20% probability during training. The model
is trained with a batch size of 16 clips and for 18.8K steps. The best epoch is
selected using validation accuracy.

Video Pose Distillation (VPD) [13] features are available for the Figure Skat-
ing dataset and serve as a strong baseline / performance target for E2E-Spot.

The VPD features are learned in an unsupervised manner over the entire
video dataset (including the test videos, without access to action or event labels).
They make use of hand-engineered subject tracking, RGB pixels, and optical
flow as inputs. We test both 2D-VPD and (view-invariant) VI-VPD features.
The differences are subtle when applied to precise spotting, with 2D-VPD being
better a majority of the time (see § C.1).
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B.4 Training Configuration (for Spotting)

With the exception of VC-Spot (an end-to-end learned baseline), all of the base-
line architectures described in § B.1 operate in two phases, learning a spotting
head on densely pre-extracted features.

We train the TCN, MS-TCN, GRU, ASFormer, and GCN models on ran-
domly sampled, 500 frame long clips — with a batch size of 50, a train-val
cycle of 40 steps (1M frames), and for 50 cycles. Updates are performed using
AdamW [16] with a base learning rate of 10−3, linear warmup (3 cycles), and
cosine annealing [15]. The StridedTransformer and NetVLAD++ [10] baselines
make singular predictions on a window of frames. We train these with a batch
size of 100 clips, train-val cycles of 1,000 steps, and for 50 cycles. We use the
same AdamW [16] optimizer and LR schedule as the other models. Validation
mAP, computed at the end of every training cycle, is used for model selection.

C Additional Experiments & Ablations

In § C.1 and § C.2, we present additional baselines omitted from the main paper
due to space constraints. § C.3 assesses the necessity of non-maximum suppres-
sion (NMS) for temporally precise spotting. § C.4 provides results when evalu-
ating spotting performance at tolerance δ = 0 frames (i.e., the exact frame of
human annotation). § C.5 analyzes the variation in precise spotting performance
among the event classes in each dataset.

C.1 Full Baseline Result Tables

We report the top baseline results in the main paper § 5.1. Table C1, C2, and C3
provide full results for all of the baselines and feature combinations.

For the best performing MS-TCN [9], GRU [3], and ASFormer [27] config-
urations, we further trained the model with and without CALF [4] and label
dilation (propagating labels to ±1 adjacent frames). NetVLAD++ [10] failed to
overcome label sparsity in all tested datasets except for Tennis (with fine-tuned
features). The StridedTransformer [18] performed better than NetVLAD++ and
was tested with and without label dilation (±1 frames), as it also suffers from
sparsity in the foreground labels.

C.2 Impact of Additional Losses on Baseline Performance

Losses such as CALF [4] have been proposed in spotting literature as a way
to address sparsity in temporal event labels. In the interest of obtaining strong
baselines for precise spotting, we attempt to boost the top performing model
architecture and feature baselines in § C.1.

We add CALF as an additional loss, with parameters that smooth around a
event within a 7 frame window. Conceptually, because of the tight tolerances in
temporally precise spotting, the small number of frames in an appropriately sized
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Table C1: Spotting performance (mAP @ δ frames) using pre-trained
features without fine-tuning. † indicates NMS. The best baseline scores are
underlined. Due to the low performance of I3D [2] features (compared to
TSP [1]), we do not extract I3D features for FineDiving and FineGym.

Tennis FS-Comp FS-Perf FineDiving FineGym
Full Start

δ=1 2 1 2 1 2 1 2 1 2 1 2

Default: E2E-Spot 200MF (RGB) 96.1 †97.7 †81.0 †93.5 †85.1 †95.7 68.4 †85.3 †47.9 †65.2 †61.0 †78.4
Best: E2E-Spot 800MF (2-stream) †96.9 †98.1 †83.4 †94.9 †83.3 †96.0 †66.4 †84.8 †51.8 †68.5 †65.3 †81.6

Feature Model Extra loss (if any)

I3D [2] MS-TCN 62.7 75.0 60.8 †79.1 64.0 †83.6 - - - - - -

(RGB + flow) MS-TCN CALF 59.7 73.6 56.4 †72.2 61.6 †81.5 - - - - - -

MS-TCN dilate 1 58.1 †75.4 59.7 †79.5 69.0 †89.3 - - - - - -

GRU 40.7 †66.1 38.6 †58.7 41.4 †64.2 - - - - - -

GRU CALF †45.7 †70.5 †31.2 †53.0 †50.5 †75.4 - - - - - -

GRU dilate 1 †41.5 †68.2 41.8 †69.8 52.5 †77.5 - - - - - -

ASFormer 55.4 †74.5 60.8 †82.2 69.0 †88.8 - - - - - -

ASFormer CALF 58.1 †76.5 61.2 †82.4 66.6 †89.7 - - - - - -

ASFormer dilate 1 49.6 †72.9 58.1 †81.1 64.6 †87.5 - - - - - -

TCN †58.9 †75.1 †53.0 †72.0 †58.7 †81.3 - - - - - -

GCN †42.6 †55.2 †19.9 †32.5 †27.1 †45.5 - - - - - -

StridedTF †34.3 †48.0 †27.0 †43.8 †40.5 †63.6 - - - - - -

StridedTF dilate 1 †44.8 †62.9 †36.2 †56.2 †47.2 †68.9 - - - - - -

MViT-B [8] MS-TCN 67.0 †78.3 56.9 †75.8 63.6 †80.8 56.1 †73.9 31.0 †48.2 †41.7 †63.2
(RGB) MS-TCN CALF 66.8 †79.3 57.4 †75.8 64.8 †84.3 56.3 †75.5 30.0 †48.3 40.1 †63.0

MS-TCN dilate 1 64.0 †80.1 55.6 †79.9 62.1 †82.9 59.3 †78.3 28.7 †48.6 †40.5 †64.8

GRU 64.8 79.6 45.6 †69.6 56.8 †76.1 57.3 76.7 †25.9 †42.1 †34.0 †54.3
GRU CALF 59.1 †76.4 †45.5 †71.1 52.9 †77.3 55.8 75.6 †20.1 †34.4 †27.0 †45.3
GRU dilate 1 †61.4 †80.8 44.7 †73.1 55.1 †79.1 48.7 †76.5 †28.5 †48.6 †39.1 †62.2

ASFormer 63.2 †79.9 55.8 †81.5 54.9 †80.4 37.4 †67.1 †24.9 †42.5 †32.4 †52.9
ASFormer CALF 63.9 †79.5 52.3 †76.6 55.7 †81.7 38.5 †67.4 †25.3 †42.9 †32.3 †53.8
ASFormer dilate 1 58.0 †78.9 †53.9 †81.8 56.4 †79.9 †35.2 †65.5 †23.4 †42.1 †32.5 †55.3

TCN †66.1 †80.4 †47.8 †67.9 †59.6 †80.2 †55.5 †77.2 †31.4 †49.1 †40.7 †62.8
GCN †36.4 †54.0 †20.8 †34.9 †27.7 †45.8 †38.8 †59.9 †12.3 †22.0 †16.8 †29.3

StridedTF †37.9 †54.9 †27.3 †45.7 †8.7 †15.2 †38.3 †64.7 †15.8 †25.4 †22.0 †34.3
StridedTF dilate 1 †54.8 †73.0 †32.0 †50.7 †39.7 †59.7 †42.1 †68.6 †20.6 †35.8 †26.4 †45.6
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Table C2: Spotting performance (mAP @ δ frames) with features fine-
tuned on RGB inputs. † indicates NMS. The best baseline scores are underlined.

Tennis FS-Comp FS-Perf FineDiving FineGym
Full Start

δ=1 2 1 2 1 2 1 2 1 2 1 2

Default: E2E-Spot 200MF (RGB) 96.1 †97.7 †81.0 †93.5 †85.1 †95.7 68.4 †85.3 †47.9 †65.2 †61.0 †78.4
Best: E2E-Spot 800MF (2-stream) †96.9 †98.1 †83.4 †94.9 †83.3 †96.0 †66.4 †84.8 †51.8 †68.5 †65.3 †81.6

Feature Model Extra loss (if any)

TSP [1] MS-TCN 90.1 †94.6 72.4 †87.4 74.3 †89.4 55.5 †76.0 †40.5 †58.5 †53.9 †73.4
MS-TCN CALF 90.9 †95.0 72.1 †87.8 76.8 89.9 54.2 †73.8 36.9 †57.4 47.5 †71.4
MS-TCN dilate 1 †87.5 †95.1 67.0 †85.5 76.6 †89.3 57.7 †75.9 †37.8 †57.3 †53.2 †73.5

GRU 89.5 95.1 66.6 †83.9 75.5 †89.4 55.5 76.5 †38.4 †57.2 †49.8 †70.5
GRU CALF 88.6 †94.9 64.4 †83.0 †60.1 †84.3 57.0 78.2 †36.1 †57.2 †44.3 †70.0
GRU dilate 1 †89.3 †96.0 †68.4 †88.3 †69.6 †90.6 †53.2 †77.4 †38.7 †58.8 †53.2 †74.2

ASFormer 89.8 †94.8 77.7 †94.1 80.2 †94.5 47.1 †73.2 †38.8 †57.6 †51.1 †72.0
ASFormer CALF 89.0 †95.5 73.4 †92.5 78.0 †94.2 51.3 †77.4 †38.6 †57.6 †50.3 †71.6
ASFormer dilate 1 †86.9 †95.4 †72.2 †94.0 78.0 †94.0 †49.2 †76.4 †36.5 †57.6 †50.4 †72.9

TCN †88.1 †94.5 †62.6 †79.0 †67.3 †86.2 †51.9 †75.7 †41.1 †59.6 †53.5 †73.7
GCN †85.7 †93.4 †52.9 †70.6 †53.5 †74.8 †48.9 †71.0 †33.2 †49.5 †43.3 †62.2
NetVLAD++ †55.5 †72.7 - - - - - - - - - -

StridedTF †83.0 †93.3 †53.8 †73.3 †55.3 †76.9 †46.7 †74.2 †31.5 †47.8 †42.6 †60.9
StridedTF dilate 1 †86.0 †94.7 †61.2 †83.1 †65.3 †84.6 †46.6 †76.2 †31.7 †51.6 †39.6 †63.2

(K + 1)-VC MS-TCN 91.1 †94.8 66.5 †77.2 73.6 †83.8 63.2 †81.4 †40.9 †57.9 †53.2 †71.9
MS-TCN CALF 91.0 †94.5 60.8 †73.1 75.2 †86.7 59.0 †76.4 †38.6 †56.8 †50.1 †70.8
MS-TCN dilate 1 †90.3 †95.1 60.3 †73.6 77.2 †89.9 60.4 †83.5 †39.2 †58.2 †53.1 †73.8

GRU †90.8 †96.0 †61.1 †75.5 73.0 †86.5 60.0 †80.6 †41.1 †57.9 †54.3 †72.3
GRU CALF †88.2 †95.4 †62.4 †77.2 †73.3 †85.0 61.8 †80.5 †39.6 †55.3 †51.8 †69.5
GRU dilate 1 †91.5 †96.2 †61.7 †78.9 †76.8 †89.4 †58.2 †82.6 †38.6 †57.5 †53.6 †73.6

ASFormer 92.1 †95.5 67.2 †79.0 77.1 †88.9 †56.9 †83.0 †40.0 †56.8 †52.4 †70.3
ASFormer CALF 90.8 †94.5 67.6 †79.5 75.2 †88.3 58.9 †82.2 †40.0 †56.9 †52.9 †71.2
ASFormer dilate 1 †91.6 †96.2 †65.5 †79.8 75.4 †89.8 58.8 †83.5 †38.1 †56.9 †53.6 †72.9

TCN †91.9 †96.1 †58.8 †74.2 †74.5 †86.8 †58.6 †77.9 †42.0 †58.9 †54.6 †73.3
GCN †88.4 †94.2 †54.8 †68.0 72.6 †84.1 †55.3 †75.4 †32.6 †46.0 †43.2 †58.6
NetVLAD++ †18.2 †26.3 - - - - - - - - - -

StridedTF †88.4 †94.2 †39.2 †61.2 †59.1 †78.2 †50.4 †75.6 †24.7 †36.5 †34.4 †48.2
StridedTF dilate 1 †88.6 †95.2 †59.3 †77.2 †71.7 †87.6 †45.5 †75.3 †24.3 †39.2 †30.4 †48.3
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Table C3: Spotting performance (mAP @ δ frames) on FS-Comp and
FS-Perf using pose features [13], fine-tuned on RGB and optical flow. † indicates
NMS. SOTA results with pose features are bold.

FS-Comp FS-Perf
δ=1 2 1 2

Default: E2E-Spot 200MF (RGB) †81.0 †93.5 †85.1 †95.7

Best: E2E-Spot 800MF (2-stream) †83.4 †94.9 †83.3 †96.0

Feature Model Extra loss (if any)

2D-VPD [13] MS-TCN 77.2 †90.8 83.1 †94.5

MS-TCN CALF 83.5 †96.2 85.2 †96.0

MS-TCN dilate 1 81.7 †95.5 82.4 †96.4

GRU †74.4 †94.2 †77.4 †94.9

GRU CALF †72.2 †93.4 †46.3 †63.0

GRU dilate 1 †75.9 †94.3 †75.7 †94.1

ASFormer 78.8 †94.8 76.9 †95.1

ASFormer CALF 78.2 †94.5 77.2 †93.9

ASFormer dilate 1 †79.0 †95.7 79.3 †93.2

TCN †75.0 †89.5 †76.5 †89.7

GCN †60.3 †72.5 †64.1 †77.2

StridedTF †12.7 †20.0 †26.0 †37.1

StridedTF dilate 1 †61.3 †79.2 †66.6 †84.2

VI-VPD [13] MS-TCN 73.4 †88.8 80.8 †91.9

MS-TCN CALF 74.3 88.2 79.4 †91.3

MS-TCN dilate 1 77.8 †91.3 77.9 †92.7

GRU 76.0 †94.8 78.2 †94.2

GRU CALF †74.6 †93.7 †77.6 †93.5

GRU dilate 1 †74.9 †93.9 †77.6 †95.3

ASFormer 77.4 †94.8 85.2 †95.6

ASFormer CALF 80.2 †94.5 84.2 †95.9

ASFormer dilate 1 79.7 †95.1 80.9 †93.7

TCN †68.3 †85.2 †73.9 †87.9

GCN †57.5 †71.6 †60.3 †71.6

StridedTF †23.4 †35.0 †67.5 †82.0

StridedTF dilate 1 †65.7 †82.3 †69.7 †87.7
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Table C4: Ablation of non-maximum suppression (NMS) at different tol-
erances δ for various model and feature configurations. Best results per config-
uration are underlined. A spotting method’s sensitivity to NMS can depend on
the model (single vs. 2-stream), dataset, and feature type. The differences be-
tween NMS windows of 1 to 4 are also subtle, and a NMS window of 1 frame or
none at all is often sufficient.

Tennis FS-Comp FS-Perf FineDiving FineGym
Full Start

δ=1 2 1 2 1 2 1 2 1 2 1 2

Default: E2E-Spot 200MF (RGB)
No NMS 96.1 96.8 56.2 58.9 62.6 65.4 68.4 84.9 40.6 45.4 51.9 57.3
window = 1 96.1 96.7 81.0 93.5 85.1 95.7 66.3 85.3 47.9 65.2 61.0 78.4
window = 2 95.9 97.6 81.3 93.9 84.2 95.2 62.1 83.9 47.4 64.8 60.5 78.1
window = 4 95.7 97.4 81.2 93.8 84.1 95.1 59.2 81.6 47.0 64.2 60.2 77.6

Best: E2E-Spot 800MF (2-stream)
No NMS 93.6 94.2 55.6 58.1 57.3 60.4 66.1 80.8 43.2 48.1 55.3 60.8
window = 1 96.9 98.1 83.4 94.9 83.3 96.0 66.4 84.7 51.8 68.5 65.3 81.6
window = 2 96.7 98.1 82.8 94.9 83.0 95.8 62.5 83.1 51.2 68.0 64.9 81.3
window = 4 96.6 98.0 82.8 94.9 83.0 95.8 59.9 81.0 50.7 67.2 64.6 80.9

Baseline: MS-TCN w/ TSP features
No NMS 90.1 94.4 72.4 83.9 74.3 89.2 55.5 72.7 40.0 47.6 51.9 60.5
window = 1 87.6 94.6 68.2 87.4 68.1 89.4 50.9 76.0 40.5 58.5 53.9 73.4
window = 2 87.3 94.4 68.2 87.3 68.1 89.4 49.3 75.2 40.5 58.5 54.1 73.6
window = 4 87.0 94.0 68.2 87.3 68.1 89.4 47.7 73.4 40.4 58.3 54.0 73.4

Baseline: ASFormer w/ TSP features
No NMS 92.1 94.0 67.2 75.3 77.1 85.9 56.8 69.5 33.8 39.1 42.9 48.5
window = 1 91.8 95.5 66.1 79.0 74.5 88.9 56.9 83.0 40.0 56.8 52.4 70.3
window = 2 91.5 95.4 66.1 79.0 74.5 88.9 55.9 82.3 39.9 56.7 52.3 70.3
window = 4 91.4 95.2 66.1 79.0 74.5 88.9 55.1 81.0 39.7 56.5 52.2 70.2

Table C5: Spotting performance (mAP @ δ = 0), when predicting the
exact frame of human annotation. SOTA is bold. Best results per-category are
otherwise underlined. As noted in § C.4, the conclusions that can be drawn from
this table are limited because of ambiguity in the frame-level annotations.

Tennis FS-Comp FS-Perf FineDiving FineGym
Full Start

Default: E2E-Spot 200MF (RGB) 71.6 36.7 40.5 30.1 22.4 27.5
Best: E2E-Spot 800MF (2-stream) 69.1 37.6 38.6 30.2 23.7 29.2

MS-TCN w/ TSP features 50.0 33.3 34.0 23.2 19.7 25.3
w/ (K + 1)-VC features 61.0 31.9 36.7 26.7 19.2 24.0
w/ 2D-VPD features & CALF - 43.1 38.9 - - -

GRU w/ TSP features 42.4 30.6 27.4 15.4 18.6 23.5
w/ (K + 1)-VC features 56.2 28.3 36.3 18.7 19.2 24.5
w/ 2D-VPD features & CALF - 32.8 20.3 - - -

ASFormer w/ TSP features 51.6 36.6 37.4 22.5 18.6 23.6
w/ (K + 1)-VC features 62.8 31.8 36.6 27.4 18.6 23.5
w/ 2D-VPD features & CALF - 35.4 35.1 - - -
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window prevents the loss from achieving as smooth as an effect as in coarse action
spotting. We also implemented a simpler label dilation baseline, which addresses
the sparsity problem by propagating event labels to ±1 frame before and after
each event at training time (denoted as “dilate 1”).

Table C1, C2, and C3 list results with CALF and label dilation for the MS-
TCN [9], GRU [3], and ASFormer [27] architectures. The results are generally
mixed, with scores being similar with and without these loss modifications (e.g.,
within 1-2 mAP @ δ = 1). On FS-Comp, the difference is more pronounced with
2D-VPD [13] features — up to 6.3 mAP improvement.

C.3 Sensitivity of Results to Non-Maximum Suppression

Non-maximum suppression (NMS) is a common post-processing technique in de-
tection tasks [5,11]. We find that, for precise spotting, NMS is typically beneficial
at tolerances of δ ≥ 2 frames but may be harmful for δ ≤ 1 frame (see Table C4).
Tuning the NMS window threshold past 1 frame often has a minimal effect of
less than 1 mAP point.

C.4 Predicting the Exact Frame of Human Annotation

While our spotting datasets have annotations at the frame-level, the δ = 0 frame-
prediction task is especially challenging to scientifically evaluate. In 25–30 FPS
video, quick events such as a “ball bounce” can fall between two adjacent frames.
δ = 0 is also unforgiving of any small inconsistencies in labeling. Ignoring these
limitations, E2E-Spot outperforms the baseline approaches, and compares simi-
larly to models using hand-engineered pose features, in agreement with human
annotators (Table C5). The practical meaning of mAP @ δ = 0, however, is
limited due to the aforementioned confounds.

C.5 Visualizing the Spotting Performance of Different Classes

The difficulty of precisely spotting events can vary by event class. In Figure C1,
we show interpolated precision-recall curves for the different classes in the Tennis,
Figure Skating, FineDiving, and FineGym datasets from our default E2E-Spot
200MF model trained on RGB inputs.

While spotting performance is similar among the different classes that com-
prise Tennis, Figure Skating, and FineDiving, spotting on FineGym shows a
large amount of variation; some classes such as “balance beam dismounts start”
and “floor exercise front salto start” are spotted with high precision and recall
at δ = 1, while other classes such as “vault (timestamp 0)” and “balance beam
turns end” exhibit much lower performance. We noted in § 4 that there is vari-
ation in the visual precision of different FineGym classes, where the annotated
frames do not necessarily map to salient visual events.
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(a) Tennis (6 classes)
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(b) FS-Comp (4 classes)
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(c) FS-Perf (4 classes)
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(d) FineDiving (4 classes)
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(e) FineGym-Full (32 classes)
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(f) FineGym-Start (16 classes)

Fig. C1: Precision-recall curves for each event class at δ = 1, produced by
E2E-Spot’s default configuration. Charts on the left are without NMS and
charts on the right are with NMS. NMS improves precision by suppressing
nearby detections but can also lead to lower recall.
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D Dataset Details

We use the Tennis [28], Figure Skating [13], FineDiving [25], and FineGym [20]
datasets, with precise temporal event labels.

D.1 Tennis

The Tennis dataset is an extension of the dataset proposed by Zhang et al [28]
to 19 new videos. Like the nine original videos from [28], the new videos are
obtained from YouTube at full HD resolution and contain content from the US
Open and Wimbledon tournaments. We annotate at least one full ‘set’ (a unit
of gameplay) from each of the 19 new videos in order to diversify the dataset for
training and evaluation.

To focus on the temporal aspect of precise spotting, we evaluate on the six
top-level categories of events enumerated in § 4 and Table D6. These events
are selected by their temporal definitions instead of the full set of semantic
action attributes (e.g., swing type differentiated by topspin vs. slice; forehand
vs. backhand; volley). The dataset contains 1.3M frames, of which 2.6% are
precise temporal events.

D.2 Figure Skating

We extend the labels by Hong et al [13], which include fine-grained action classes
and their temporal extents at approximately 1 second precision. To perform
precise spotting, we manually re-annotate the labels to frame-accurate take-off
and landing events.

As in Tennis, we separate temporally precise spotting from fine-grained clas-
sification of actions (e.g., the jump type) in order to focus on the temporal aspect
of the spotting problem. See Table D7 for event statistics. The dataset contains
1.6M frames, of which only 0.23% are precise temporal events.

D.3 FineDiving

We use the pre-extracted frames provided by Xu et al [25] and spot the frames
of transition between segments. The events include somersaults.pike, somer-
saults.tuck, twists, and entry. Note that we ignore the number of revolutions
when generating frame-level event labels. See Table D8 for event statistics. The
dataset contains 547K frames, of which 2.2% are precise temporal events.

D.4 FineGym

FineGym is a large gymnastics video dataset released by Shao et al [20]. It con-
tains annotations for balance beam, floor exercises, uneven bars, and vaulting.
The dataset is primarily used for action recognition, with 288 fine-grained classes
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and their time intervals. These actions are contained within individual perfor-
mances (e.g., an untrimmed balance beam routine), and several performances
appear in a single video from YouTube.

We detect precise events within the untrimmed performances and split the
dataset three ways for training, validation, and testing; these splits do not contain
overlap in performances and source videos. We discard any performances that
do not contain temporal annotations, have malformed annotations, or have an-
notations that are missing a class label in Gym288, leaving 5,374 performances.

Shao et al. [20] propose a hierarchy of action categories (to which the Gym288
classes belong), and we reduce the spotting problem to the granularity of these
categories (e.g., “balance beam dismounts” is one example). Because our focus is
temporal precision, we leave the challenging task of (unbalanced) 288-way action
classification, which can be performed after events have been spotted, to past
and future work on fine-grained action recognition.

We define temporally precise events in FineGym as the start and end frames
of action intervals. This definition is straightforward for actions in balance beam,
floor exercises, and uneven bars. Each vault, however, is specified as a sequence
of three back-to-back segments, which we convert into four events. See Table D9
for the event breakdown and statistics.

A minority of videos (259) in the FineGym dataset have frame rates higher
than 25–30 FPS. For consistency, since our spotting tolerances are defined in
δ frames, we resample those videos to between 25–30 FPS. The final dataset
contains 7.6M frames, 1.1% of which are precise temporal events.
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Table D6: Tennis dataset: event classes and their counts.

Event class Train Val Test

Near-court serve (ball contact) 673 238 779
Near-court swing (ball contact) 2199 709 4136
Near-court ball bounce 2606 871 4650
Far-court serve (ball contact) 657 200 800
Far-court swing (ball contact) 2220 757 4146
Far-court ball bounce 2621 867 4662

Table D7: Figure Skating dataset: event classes and their counts.

FS-Comp FS-Perf
Event class Train Val Test Train Val Test

Jump takeoff 704 233 527 723 372 369
Jump landing 704 233 527 723 372 369
Flying spin takeoff 178 59 136 183 94 96
Flying spin landing 178 59 136 183 94 96

Table D8: FineDiving dataset: event classes and their counts.

Event class Train Val Test

Entry 1794 449 741
Som(s).Pike 1254 345 553
Som(s).Tuck 667 149 255
Twist(s) 467 120 216
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Table D9: FineGym dataset: event classes and their counts. The classes are
based on the ‘set-level categories’ defined by Shao et al [20]. We refer to the full
set of classes as FineGym-Full and a more visually consistent subset, containing
primarily start events, as FineGym-Start.

Event class In FineGym-Start Train Val Test

Floor exercise leap jump hop start 2007 602 629
Floor exercise leap jump hop end 2007 602 629
Floor exercise turns start 683 197 223
Floor exercise turns end 683 197 223
Floor exercise side salto start 23 13 13
Floor exercise side salto end 23 13 13
Floor exercise front salto start 818 259 268
Floor exercise front salto end 818 259 268
Floor exercise back salto start 1850 524 604
Floor exercise back salto end 1850 524 604
Balance beam leap jump hop start 3062 765 960
Balance beam leap jump hop end 3062 765 960
Balance beam turns start 857 215 299
Balance beam turns end 857 215 299
Balance beam flight salto start 2637 720 830
Balance beam flight salto end 2637 720 830
Balance beam flight handspring start 1835 440 618
Balance beam flight handspring end 1835 440 618
Balance beam dismounts start 763 188 267
Balance beam dismounts end 763 188 267
Uneven bars circles start 4143 1151 1318
Uneven bars circles end 4143 1151 1318
Uneven bars flight same bar start 1029 270 325
Uneven bars flight same bar end 1029 270 325
Uneven bars transition flight start 2079 630 680
Uneven bars transition flight end 2079 630 680
Uneven bars dismounts start 750 225 252
Uneven bars dismounts end 750 225 252
Vault (timestamp 0) 1263 367 401
Vault (timestamp 1) 1263 367 401
Vault (timestamp 2) 1263 367 401
Vault (timestamp 3) 1263 367 401
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