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Abstract—Careful resource monitoring is necessary to under-
stand usage patterns and set conservation goals in an institutional
setting. Sensor systems provide data to measure consumption
and evaluate the effectiveness of active interventions. However,
deploying sensing systems can be difficult when infrastructure
support is limited. This paper describes the process of designing
Tethys, a wireless water flow sensor that collects data at per-
fixture granularity without dependence on existing infrastructure
and trusted gateways. Rather than rely on electrical infrastruc-
ture, Tethys implements energy harvesting to allow for long
term deployment. To avoid dependence on existing network
infrastructure, Tethys crowdsources the data collection process
to residents’ smartphones acting as gateways. These gateways
are untrusted and unreliable, so Tethys implements end-to-end
reliability and security between the sensing device and a cloud
backend.

We present initial findings from a deployment in undergrad-
uate residential halls. Our results demonstrate that Tethys can
capture meaningful patterns in shower use. For instance, visible
water conservation signs are statistically correlated with shorter
mean shower length (p < 0.05) and are a potential area for future
studies.

Index Terms—Internet of Things, Wireless Sensor Networks,
Crowdsourcing, Energy Harvesting

I. INTRODUCTION

This paper presents Tethys, a water flow sensing system
designed to measure consumption from showers in residential
buildings. Tethys’s main contributions are a physical design
and network architecture that enable long term deployment
and secure data collection without dependence on existing
infrastructure or trusted gateways.

Through harvesting energy from water flow, Tethys supports
extended sensor deployment without reliance on electrical in-
frastructure. Rather than depend on the availability of existing
wireless infrastructure, Tethys uses a delay-tolerant network
comprised of residents’ mobile phones acting as opportunistic
gateways. Crowdsourcing reduces the individual effort needed
to collect data from a large, distributed population of sensors.
However, the use of untrusted phones as gateway devices
requires Tethys to enforce security and reliability end-to-end.

We present results from data collected from 23 sensors
deployed in undergraduate residential halls over the span of
two weeks. Our deployment coincided with an active water
conservation campaign by residential housing management

and demonstrated that prominent signs with conservation mes-
sages are correlated with a statistically significant difference
in mean shower length (p < 0.05). We hope that Tethys
will enable further studies, and allow for more informed
management decisions.

II. BACKGROUND AND MOTIVATION

Effective planning and implementation of water conser-
vation policies requires an understanding the patterns and
processes that drive consumption. Building level measure-
ments can provide a baseline for analysis, but discard vital
detail about the underlying generative processes and individual
data points in the population. For instance, building level
aggregation can reveal that within the span of a day a total
of 5, 000 gallons of water were consumed, but cannot reveal
if a decrease in water usage is due to residents taking shorter
showers or fewer residents taking showers. Answering these
questions requires data at the per-fixture level, at minute or
second granularity.

Existing water meters that operate at the per fixture level
assume that the user generating the data is also viewing and
collecting the data; data is either displayed visually in real
time ([1]–[3]) or immediately transferred to a trusted gateway,
such as a smartphone ([4]–[6]). For IoT sensors deployed in
homes, this gives users personal feedback. However, for the
shared dormitory setting that Tethys targets, the data consumer
is the residential building management. Existing devices do
not support decoupling of data generation from data collection
(e.g., delay in collection leads to data loss). Moreover, unlike
existing designs, Tethys also requires that data collection be
private and that data access be restricted so that adversaries
cannot use the sensors to spy on other residents.

In summary, Tethys allows building managers and re-
searchers to reliably observe building-wide shower use pat-
terns at a fine granularity while preserving the anonymity of
occupants.

III. INFRASTRUCTURE-FREE SENSOR DESIGN

Tethys is designed to allow for long deployments without
reliance on electrical infrastructure. This is achieved through a



Fig. 1. Assembled Tethys sensor. The PCB (green) and battery (yellow) are
placed directly underneath the stator. A thin layer of the enclosure’s plastic
separates the rotor and stator. Water flows in from a slit at the left, turns the
rotor, and flows out to the right.

hardware and enclosure design that supports energy harvesting
and a power-efficient software implementation.

A. Energy Harvesting

To power the device and recharge its battery over long
deployments, Tethys uses an electromagnetic generator to
harvest kinetic energy from water flow. In order to simplify
the procurement of parts, we adapted an electromagnetic
generator typically used to power LED shower heads for use
in Tethys’s enclosure. Compared to other energy harvesting
approaches such as thermoelectric generation, electromagnetic
energy harvesting is more invasive, requiring a unit to be
inserted into the water supply. However, it can harvest nearly
two orders of magnitude more power from water flow than
other methods [7]. The same generator can also be used to
measure flow rate by exploiting the linear correlation between
the frequency of the generated voltage and flow rate.

Dormitory showers are in active use only during certain
times of day and for limited time intervals. In order to support
delayed data transmission when the shower is not running,
Tethys requires a battery as a persistent power source. Tethys
uses a rechargeable 4.2V 500mAh lithium ion battery that has
high energy density in a relatively small form factor.

B. Enclosure

A custom enclosure encases the generator along with the
PCB and battery. The enclosure uses an inline design; the
device is mounted between a water pipe and shower head so
that the generator’s rotor is in line with the water flow. Figure
1 shows an assembled Tethys device.

Wireless communication necessitates an enclosure made of
plastic or non-metal material so as to not interfere with radio
operation. The standard approach to waterproofing consumer
products is to encase the circuit in resin. However, this makes
it more difficult to reprogram devices after manufacturing.
Tethys instead relies on a waterproof compartment to house the
PCB, which can be easily disassembled for repair or upgrades.

Manufacturing an enclosure for Tethys led to some unan-
ticipated challenges. 3D printing enables rapid prototyping,

but the choice of printing materials for actual deployment is
limited. Because Tethys is an inline sensor, the material must
withstand high temperature and pressure, while also being
biocompatible (i.e., the surface cannot allow for buildup of
bacteria or mold). Deformation in our 3D printed prototypes,
led to unacceptable variation in the energy harvested. Our final
enclosure uses an injection molded design, which is able to
satisfy the requirements described above. Switching from 3D
printing to injection molding required changes to the design;
whereas a 3D print design minimizes the amount of material
used, injection molding requires that a mold is simple to
manufacture.

Unlike 3D printing, injection molding incurs a large initial
mold cost. The mold cost for all three pieces of the design
was $20,000. Economies of scale mean that at higher volumes
the impact of this cost becomes negligible; at the original
deployment goal of 200 devices, the tooling cost is $100 per
device, bringing the total cost of a sensor to $138.36. At 2000
devices, a sensor would cost $41.86, making it competitive
with commercial water sensor devices such as Amphiro A1
($99.99) [1].

C. Embedded Device
Tethys uses a nRF51822 with a programmable Cortex M0,

for processing and Bluetooth Low Energy (BLE) communi-
cation. The PCB layout is shown in Figure 2. The nRF51822
is programmed to record timestamped water flow and temper-
ature readings. The data is encrypted on the device and sent
using BLE to mobile gateways. Upon deployment, each device
is initialized with the current time and encryption keys.

Water flow rate is linearly correlated to the frequency of
the AC voltage generated. The generator does not spin at
frequencies below 0.7 gal/min, but showers in use are unlikely
to have water flow rates that fall below this amount. Tethys
determines the water flow rate by sending a single phase of
the generator output through the voltage clamp to an ADC pin
of the nRF51822. The ADC is sampled once a second until
there is a change in voltage to indicate a shower event, after
which the sampling rate is changed to sample at a rate of 2ms
until 250 data points are collected. The 250 data points are
then used to estimate frequency by counting the number of
directional transitions in voltage. The thermistor is sampled
once a second.

To minimize power consumption, Tethys reduces the size
of data that is stored for later transmission with delta com-
pression; new data points are not stored unless the change in
measured frequency of the generated AC waveform is at least
5 Hz or the change in temperature is at least 2◦C. We tuned
this threshold to effectively suppress noise.

The nRF51822 uses Nordic’s S110 Softdevice implementa-
tion of BLE with an advertisement interval of 1 second. TX
power is set to -8dB, which is sufficient for sensors to reliably
reach smartphones in the shower rooms and hallways.

IV. INFRASTRUCTURE-FREE NETWORKING

Sensors may be used in a mobile setting or in a location
where existing networks inaccessible or unusable (e.g., due to



Fig. 2. Tethys PCB layout with key features labeled. Board dimensions are
33.5mm x 38.5mm x 1.6mm

power reasons). Removing a sensor’s dependence on existing
networks enables more flexible deployments. While Wi-Fi
coverage exists in the dormitories that Tethys targets, the
network is tightly controlled. Each Internet connected device
must be sponsored by a permanent resident of the building,
making it nontrivial or against university policy to connect
sensors and custom gateways to the network.

Manually collecting data from sensors is difficult. Because
devices are designed to be deployed in many buildings, it is
infeasible to expect a single individual (or even a small group)
to routinely service each sensor. While one option is to have
sensors store data for collection at the end of the study, such a
design would prevent ongoing feedback on policy effectiveness
and would effectively limit the duration of the study by the
size of the sensor’s memory capacity.

Instead, Tethys crowdsources the data-collection task to
building residents. As shown in Figure 3, the embedded Tethys
sensor communicates using BLE to an app on a smartphone
acting as a gateway, which in turn sends data to the cloud.
The app runs in the background on users’ smartphones,
opportunistically collecting data when in range of a sensor.
Data is stored until the phone connects to the Internet, upon
which it is uploaded to the cloud servers. A resident can collect
data with minimal effort; simply walking near a bathroom or
periodically entering over the course of a normal day is enough
to download and transmit the sensor data to the cloud. This
model is suitable for Tethys as water usage results from human
behavior, meaning locations that generate a lot of sensor data
are also likely to be visited by gateway devices.

V. UNTRUSTED GATEWAYS

This section discusses the networking and security implica-
tions that result from utilizing untrusted gateways.

A. Delay Tolerant Network

Tethys makes no assumptions as to the reliability and
network connectivity of individual gateway devices. Phones
may not always be connected to the network while collecting
data; the gateway application can be uninstalled or disabled
at any minute; and data can be lost or delayed indefinitely.
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Fig. 3. Network design where the sensors transmit encrypted data packets
to smartphone gateway devices which forward the packets to the cloud. The
cloud provides cumulative acknowledgements back to the sensor, which stores
data packets in flash until it receives an acknowledgement.

Tethys addresses these issues by implementing reliable, delay-
tolerant, end-to-end acknowledgement of data from the sensor
to the cloud.

Sensor readings and metadata are segmented into packets
and acknowledged cumulatively by the cloud backend. A
sensor must keep packets in flash and retransmit them until
an acknowledgement is received. At present, each sensor
retransmits data in an opportunistic manner, flooding data
(starting at the first unacknowledged packet) to each phone-
gateway that connects. However, Tethys’s design easily allows
for more conservative and less energy-intensive policies to be
added in the future.

As the network is delay tolerant, a packet may arrive at the
backend multiple times or out of order. These conditions are
handled by the backend server.

The latency for acknowledgement delivery is reduced by
periodically prefetching acknowledgements in the gateway
application for all or a subset of sensors. In an average
300-person dormitory, each hall contains approximately 25
residents and 4 shower fixtures. Each acknowledgement is a
20B packet consisting of a packet sequence number and 128-
bit keyed MAC. Thus, prefetching acknowledgements per hall
incurs a relatively insignificant space overhead.

B. Data Security

While end-to-end acknowledgement of data prevents data
loss, allowing any untrusted phone to act as a gateway device
means that the design also needs to ensure that users cannot
snoop packets or corrupt measured data. Such behaviors, if
allowed, can have negative privacy implications and undermine
the quality of the collected data. Thus, Tethys requires end-to
end security as well as reliable delivery.

BLE only provides per-hop encryption and integrity, which
is insufficient if the gateway is untrusted. Instead, Tethys uses
end-to-end authenticated encryption between the embedded
sensor and cloud server, above the BLE layer. Sensors ensure
that data is encrypted and MACed before being sent to a
gateway device. Acknowledgement numbers from the cloud
server to the sensor are MACed but do not need to be
encrypted and confidential.

The design exposes the limitations that are faced when try-
ing to build secure applications on top of resource-constrained
embedded devices. The maximum packet payload for BLE is
limited by hardware support and is typically 20B for many



Fig. 4. Conservation message advocating residents to take shorter showers.

chips. This leaves little room for both data and MACs in
a single packet. Using multiple packets is possible but also
less efficient. Our implementation sends an acknowledgement
number and a SHA256-HMAC, truncated to 128-bits (which
is adequate for our deployment). The nRF51822 also only sup-
ports AES encryption (not decryption) limiting the encryption
modes that can be used if both encryption and decryption are
required.

Data from Tethys sensors is encrypted with Offset Code-
book Mode (OCB) with AES128. OCB provides authenticated
encryption, with an Encrypt-then-MAC strategy. Each Tethys
device shares a unique symmetric key with the backend server.
This is installed onto the device and server out-of-band. To
reduce the per-packet overhead of a large 128-bit MAC for
each packet, we use a block size of 128-bits and encrypt in
batches of 9 packets, with every 10th packet being reserved for
the MAC. One consequence of this design is that the backend
server only decrypts if it knows that all 10 packets have been
received and are valid. Together with authenticated acknowl-
edgements, these measures prevent malicious or curious users
from snooping, tampering with, or fabricating data and control
traffic.

VI. DATA ANALYSIS AND EVALUATION

We analyze the data collected from an initial deployment
of sensors in bathrooms across three undergraduate residence
halls. The residences were chosen for uniformity of layout
and design, with each bathroom containing two showers. At
the time of deployment, some showers already contained water
conservation messages as seen in Figure 4. Data was collected
from 23 sensors over the span of 2 weeks, with a total of
1017 showers recorded. We measure how our results compare
against initial hypotheses about data and water use patterns.

A. Compression Efficiency

Tethys uses delta compression to reduce the amount of data
that needs to be stored and transmitted. Sensor data is only
recorded if there is a change in water flow or temperature
above a heuristic threshold. A compression ratio of 10 means
that a 300 second shower that would create 300 datapoints
without compression is compressed into 30 data points. For

Fig. 5. Recorded shower data from a single sensor with delta compression
ratio of (a) 7.0 and (b) 35.4

the task of counting and measuring shower length, a high
compression ratio is desirable as it means less data needs to
be stored and transmitted.

Initial predictions were that most recorded data points would
be due to temperature changes at the beginning and end of a
shower, as water flow is rarely adjusted once a shower is on.
With a predicted average shower length of 10 minutes, we
hypothesized that the average compression ratio would be 30,
with around 20 data points per shower and variance caused by
differences in shower length.

However, deployment results show that half the total show-
ers have compression ratios below 20, with a degree of high
variance overall. The low compression ratio and the high
variance can be explained by Figure 5, where the graphs show
data from two different showers recorded by the same sensor.
As the fixture and sensor remain constant, differences between
the two graphs must be due to variations in pressure from
localized water usage: e.g., someone using the sink or flushing
a toilet.

B. Showering Patterns

We used data collected by Tethys to test several hypothe-
ses about showering behavior. The distribution of measured
shower lengths is displayed in Figure 6. The median shower
length is 7.77 minutes, with a surprising 27.5% of showers
taking 5 minutes or less. About 4% of showers are over
20 minutes in length, making long showers potential targets
of water conservation strategies. One interesting behavior we
observed was a pattern of a short shower followed by another
short shower less than a few minutes later (e.g., the user pauses
the shower to apply soap or shampoo). To determine whether
or not the two showers were actually part of a single shower
instance, a heuristic was applied such that if two short showers
occur within two minutes of each other or if a short shower
occurs within one minute of a long shower, they are considered
part of a single shower.



Fig. 6. Cumulative distribution graph of shower lengths.

Demographic # sensors # showers Mean Std Dev
Female 12 496 8.83 6.15
Male 11 566 8.80 5.41
Closer to door 12 577 8.57 5.66
Further from door 11 440 9.13 5.85
Has message 11 462 8.38 5.20
No message 12 555 9.18 6.15

TABLE I
IMPACT OF VARIOUS DEMOGRAPHICS ON SHOWER LENGTH: LOCATION IN
FEMALE VERSUS MALE SHOWER ROOMS; LOCATION IN STALL CLOSER TO
OR FURTHER AWAY FROM THE BATHROOM DOOR; WHETHER OR NOT THE

SHOWER CONTAINS A CONSERVATION MESSAGE

Per fixture data allows comparison of shower patterns be-
tween demographic groups, as seen in Table I. The data shows
that there is no statistically significant difference in shower
lengths due to gender and that showers located closer to the
door show more use. We hypothesized that the presence of
a conservation message would not be sufficient to influence
students’ daily showing habits. However, data collected by
Tethys suggests otherwise. Specifically, we observed reduced
shower length in stalls with the conservation sign (p < 0.05).
We are optimistic that Tethys will allow for more detailed
evaluations of conservation policies in the long term.

C. Energy Evaluation

To be infrastructure and maintenance free, sensors must
be able to operate indefinitely using energy harvested from
water flow. Table II shows the most energy intensive operations
performed by the device and their energy usages. In idle mode,
the device has an average power consumption of 40µW. At a
TX power of -8dB, each advertisement packet uses 47µJ. With
an advertisement interval of 1 second, the sensor’s average
power consumption becomes 87µW. Assuming no energy is
harvested and no data is collected or transmitted, with a 4.2V
500mAh battery the sensor can run for 2.8 years without
maintenance.

The shower heads on which the sensors are deployed are
designed to have a flow rate of 1 gal/min. At this rate, the
sensors will harvest 15.6mW of power. To remove outlier
effects, we take the median shower length, 466 seconds, and
find that about 7.3J is generated per shower. At the same

Activity Energy
Write to flash (20 bytes) 93 µJ
Advertisement 47 µJ
Connection send (20 bytes) 15 µJ

TABLE II
ENERGY USAGE IN VARIOUS OPERATION MODES.

Fig. 7. Distribution of the number of datapoints contained by showers.

time, the median number of datapoints generated per shower
is 21, which is a reasonable estimate as seen from Figure
7. A single shower generates around 7.8 encrypted packets.
93µJ are required to write a 20B packet to flash, and 15µJ
are needed to transmit a packet over BLE. The energy cost
to store and transmit the data generated by a single shower
is (93 + 15)µJ/packet × 7.8 packets ≈ 842µJ. Given that a
single shower generates 7.3J, each shower generates enough
energy to retransmit its data thousands of times. Otherwise,
the energy generated by a single shower is enough to extend
the overall lifetime of the device by 23.3 hours.

Tethys periodically saves all state in flash so that it can
continue operation after power resets. Therefore, when a
sensor runs out of saved energy, once a shower does occur
the sensor will be able to harvest enough energy to power on,
record that shower, and transmit any new or previously stored
data. Shower data will not be lost to lack of energy; data will
only fail to be recorded if flash space runs out. A typical sensor
records around four showers a day, which means the average
sensor should be able to harvest enough power to stay on.

VII. RELATED WORK

Water Sensing: There are a variety of existing techniques
for measuring water flow, including sound [2], temperature [7],
and vibration [6]. Several designs use a magnetic rotor for both
flow sensing and energy harvesting ([1], [3], [4]). Hydrosense
takes a building-wide approach, measuring at a single point
and using signal processing to identify individual fixtures
and appliances. However, it is impractical for use in larger
buildings as it cannot reliably identify fixtures when more than
one fixture is in use [5].

Delay-Tolerant Networking: BLE is widely supported
among modern phones and enables opportunistic, crowd-
sourced data collection as an alternative to traditional fixed IoT



gateway designs. Past work on opportunistic wireless networks
focuses on situations when connectivity is “challenged” or
infrastructure is cost prohibitive ([8], [9]). [10] proposes a
three-tier architecture consisting of devices, data mules, and
a permanent network. [11] explores the impact of human
behaviors on opportunistic IoT networking. Tethys differs from
prior work in that gateways are untrusted, so that security and
reliability mechanisms must be implemented end-to-end on
top of delay tolerance.

Security and Privacy: Data collected by systems like
Tethys can be sensitive by nature. In many settings, even seem-
ingly innoculous data such as energy usage can be used to infer
private information such as home occupancy, daily routines,
and even what is on television ([12]–[14]). IoT devices are
notorious for weak security due to poor design and software
bugs ([15]–[17]). As we also found when designing Tethys,
adding strong security features to IoT can be difficult, partially
due to the challenge of implementing encryption algorithms on
low power, resource constrained embedded devices [18].

VIII. CONCLUSION

Fine grained water usage data, at a per-fixture or individual
granularity, is necessary for understanding the dynamics of
communal water consumption and designing reasonable wa-
ter conservation policies. Tethys addresses this need without
relying on electrical infrastructure and is able to operate for
months on end through the use of energy harvesting. Tethys
also does not require additional gateway infrastructure, instead
crowdsourcing data collection using the residents’ smart-
phones. Finally, Tethys preserves the privacy, authenticity, and
integrity of collected data despite operating over unreliable
and untrusted gateway devices. Tethys has successfully been
demonstrated in an initial deployment and can serve as a
template for future sensing applications that need to collect
data without access to infrastructure or trusted gateways.
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