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A. Implementation: Video Pose Distillation

This section provides additional implementation details
for our method described in Section 3.

Pose: p; definition. VPD is not dependent on a specific
2D pose estimator or joint definition. We use an off-the-
shelf HRNet [22] to estimate pose in the detected region
of the athlete, as is typical for top-down pose estimation.
Heuristic tracking, described in Section F, can often pro-
vide bounding boxes in frames where person detection fails.
We use only 13 of the 17 COCO [!1] keypoints (ignoring
LEye, REye, LEar, and REar), and we apply the same joint
normalization procedure as in [21].

Student inputs. The RGB crops x; are derived from the
spatial bounding boxes of the athlete in frame t. We expand
the bounding box to a square and then pad each side by 10%
or 25 pixels, whichever is greater.

Optical flow ¢, is computed using RAFT [24] between
x; and x;_1, where we crop the same location as x; in the
previous frame for x;_;. In datasets where the frame rate
differs between videos, a target frame rate of 25 frames per
second (fps) determines x;_;. To obtain the final ¢;, we
subtract the median of the RAFT output, clip to +20 pixels,
and quantize into 8-bits.

During training and inference, x; is scaled to a range of
41 and standardized with respect to the dataset RGB mean
and standard deviation; ¢; is also centered to £0.5. In video
frames where the athlete was explicitly detected by Mask
R-CNN with a score above 0.8 (see Section F), we use the
predicted mask to jitter the background with Gaussian noise
(o = 0.05) as data augmentation.

For performance reasons, we pre-compute p;, X, and ¢
in an offline manner for the entire corpus.

Auxiliary decoder D is a standard fully connected net-
work, whose sole purpose is to provide supervision for
training the student F'. We use two hidden layers, each with
dimension of 128. Note that the ablations without motion
in Table 2 do not use D and directly optimize Lo loss be-
tween the student’s output and the teacher’s p;.

Student training. The student is initialized with random
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weights. In each training epoch, we randomly sample
20,000 frames ¢ that meet the pose selection criteria out-
lined in Section 3.3. We use an AdamW [13] optimizer with
learning rate 5¢~* and a batch size of 100. The student is
trained for 1,000 epochs, though in practice the model of-
ten converges sooner and using a higher learning rate is also
possible. We use the loss on the held-out validation frames
to select the best epoch. On a single Titan V GPU, the stu-
dent model trains in approximately 8 hours.

B. Implementation: Action Recognition

This section provides details about our fine-grained ac-
tion recognition models and baselines.

B1. BiGRU Architecture

This is a standard bidirectional-GRU [4] architecture.
The model is trained on sequences of VI-VPD, 2D-VPD,
VIPE*, and normalized 2D joint position features.

The inputs are variable length sequences of per-frame pose
features (for each action). The features are sampled to 25
fps in FX35 and Diving48, where frame rate varies from 25
to 60 fps. FSJump6 is a small dataset and normalizing the
features also reduces overfitting.

Architecture. We use a two-layer BiGRU as the back-
bone, with a hidden dimension A = 128. The output of
the BiGRU is a sequence H € R?"*? of hidden states from
the final layer. To obtain a fixed size encoding of this se-
quence, we max-pool across the time steps in H. To output
an action class, the pooled encoding is sent to a fully con-
nected network consisting of BN-Dropout-FC-ReLU-BN-
Dropout-FC, with the FC dimensions being 2/ and the num-
ber of output classes.

Training. We train the network with AdamW [13] and a
batch size of 50 for 500 epochs (200 on Diving48 due to
the larger dataset). Learning rate is initially set to 1e 2 and
adjusted with a cosine schedule. Dropout rate is 0.5 on the
dense layers and 0.2 on the input sequence. Data augmen-
tation consists of the horizontally flipped input sequences.
On a single Titan V GPU, our model takes 7 minutes to
train for FSJump6, 25 minutes for Tennis7, 50 minutes for



FX35, and 100 minutes for Diving48 over the full datasets.

Inference. At inference time, we feed the input sequence
and its horizontal flip to the model; sum the predictions;
and output the top predicted class.

B2. Nearest-Neighbor Search

Our nearest-neighbor search (NNS) uses sequence align-
ment cost with dynamic time warping (DTW).

The inputs are the same as in Section B1, but with each
feature vector normalized to unit length.

Inference. We treat the training set as an index. Alignment
cost between two sequences of features, normalized by se-
quence length, is calculated using DTW with pairwise Lo
distance and the symmetricP2 step pattern [|8]. Combina-
tions of the regular and horizontally flipped pose sequences
in the testing set and training set are considered, with the
lowest cost match returned.

Because the computational complexity of inference
grows linearly with training set size, this method is unsuited
for larger datasets with more examples or classes. DTW is
also sensitive to factors such as the precision of the temporal
boundaries and the duration of the actions.

B3. Additional Baselines

We evaluated ST-GCN [30], MS-G3D [12], multiscale
TRN [34], and GSM [20] on our datasets using the reference
implementations released by the authors. For TSN [27], we
used the code from the authors of GSM [20]. The GSM [20]
codebase extends the TRN [34] and TSN frameworks, and
we backported ancillary improvements (e.g., learning rate
schedule) to the TRN codebase for fairness.

Skeleton based. The inputs to ST-GCN and MS-G3D are
the tracked 2D skeletons of only the identified athlete. For
MS-G3D, we trained both the bone and joint feature models
and reported their ensemble accuracy. Ensemble accuracy
exceeded the separate accuracies in all of our experiments.

End-to-end. We follow the best Diving48 configuration in
the GSM [20] paper for the GSM, TSN, and TRNms base-
lines. This configuration uses 16 frames, compared to 3
to 7 in earlier work [34], and samples 2 clips at inference
time. As seen in benchmarks by the authors of [19], ad-
ditional frames are immensely beneficial for fine-grained
action recognition tasks compared to coarse-grained tasks,
where the class can often be guessed in a few frames from
context [3, 28]. The backbone for these baselines is an In-
ceptionV3 [23], initialized using pretrained weights.

When comparing to TSN and TRN with optical flow, we
train using the same cropped flow images as VPD, described
in Section A. Flow and RGB model predictions are ensem-
bled to obtain the 2-stream result. Recent architectures that
model temporal information in RGB, such as GSM, often
perform as well as or better than earlier flow based work.

C. Implementation: Action Retrieval

The search algorithm for action retrieval is identical to
nearest neighbor search described in Section B2, for action
recognition, except that the pose sequence alignment scores
are retained for ranking.

Query set. For FSJump6, Tennis7, and FX35 we evaluate
with the entire corpus as queries. For the much larger Div-
ing48 dataset, we use the 1,970 test videos as queries.

D. Implementation: Action Detection

We evaluated pose features for few-shot figure skating
jump and tennis swing detection. Our method should be in-
terpreted as a baseline approach to evaluate VPD features,
given the lack of prior literature on temporally fine-grained,
few-shot video action detection, using pose features. More
sophisticated architectures for accomplishing tasks such as
generating action proposals and refining boundaries are be-
yond the scope of this paper.

The inputs are the uncut, per-frame pose feature sequences.
For figure skating, the sequences are entire, 160 second
long, short programs. ISU [7] scoring rules require that
each performance contains two individual jumps and a jump
combination (two jumps). For tennis, each point yields two
pose sequences, one for each player. The points sampled
for training have at least five swings each per player.

For the ResNet-3D [25] baseline, we extracted features
for each frame using a Kinetics-400 [8] pretrained model
on the 128 x 128 subject crops, with a window of eight
frames. A limitation of this baseline is that actions (e.g.,
tennis swings) can be shorter than the temporal window.

Architecture. We use a two-layer BiGRU as the backbone
with a hidden dimension i = 128. The hidden states at each
time step from the final GRU layer are sent to a fully con-
nected network consisting of BN-Dropout-FC-ReLU-BN-
Dropout-FC, with the FC dimensions being 2/ and 2 (a bi-
nary label for whether the frame is part of an action).

Training. The BiGRU is trained on randomly sampled se-
quences of 250 frames from the training set. We use a batch
size of 100, le? steps with the AdamW [13] optimizer, and
a learning rate of 1e~3. We apply dropout rates of 0.5 on
the dense layers and 0.2 on the input sequence. Because
only five examples are provided in this few-shot setting, we
use five-fold cross validation to train an ensemble.

The reported results are an average of separate runs on
five randomly sampled, fixed few-shot dataset splits.

Inference. We apply the trained BiGRU ensemble to the
uncut test videos to obtain averaged frame-level activations.
Consecutive activations above 0.2 are selected as proposals;
the low threshold is due to the large class imbalance because
actions represent only a small fraction of total time. A mini-
mum proposal length of three frames is required. The mean



action length in the training data was also used to expand
or trim proposals that are too short (less than 0.67 ) or too
long (greater than 1.33 x).

E. Additional Experiments

This section includes results of additional ablations,
analysis, and baselines omitted from the main text.

E1. Ablation: Data Selection Criterion

Mean estimated joint score from the teacher pose estima-
tor is used as the weak-pose selection criterion. Figure S1
shows the distribution of such scores in each of the four
sports datasets. Notice that the teacher produces signifi-
cantly less confident pose estimates on the floor exercise
(FX35) and Diving48 datasets, and also on the labeled ac-
tion portions of all four datasets.

While the optimal selection threshold is ultimately de-
pendent on the calibration and quality of the pose estimator
used, we evaluate the effect of tuning the weak-pose selec-
tion criterion on three of our datasets: Tennis7, FX35, and
Diving48. Table S1 shows results with VI-VPD when vari-
ous thresholds are applied. There is benefit to ignoring the
least confident pose estimates, though setting the threshold
too high also diminishes performance, as insufficient data
remains to supervise the student.

E2. Ablation: NNS vs. BiGRU for Recognition

Figure 3 notes that the BiGRU classifier for action recog-
nition generally performed better than NNS, except in ex-
tremely data-scarce settings, where there are simultane-
ously few classes and examples per class. Table S2 presents
results for both the BIGRU and NNS.

E3. Ablation: Activation Threshold for Detection

In Section D, we use a frame-level activation threshold
of 0.2 when proposing action intervals for few-shot action
detection. Table S3 shows the impact on average precision
(AP) of other thresholds, scored at 0.5 temporal intersection
over union (tloU). The results are similar at nearby thresh-
olds and results at 0.2 are reported for consistency.

E4. Ablation: Action Recognition Architectures

The BiGRU described in Section B1 was used in our ex-
periments for consistency. This section includes a number
of additional simple, well-studied architectures that we also
tested. Results from these models are given in Table S4 and
are often similar; the BIGRU is not necessarily the best per-
forming model in all situations. As Section 4.1 shows, how-
ever, the BiGRU is competitive with recent, state-of-the-art
methods when trained with VIPE* or our VI-VPD features.

ES. Baseline: GSM Without Cropping on Diving48

In Section 4.1.1, on few-shot action recognition, we re-
ported results from GSM [20] with cropping. This is despite
GSM, without cropping, having higher accuracy in the full
supervision setting on Diving48 [10] (see Table 1). Table S5
shows that GSM, with cropping, is the stronger baseline
when limited supervision is available.

We speculate that cropping forces the GSM model focus
on the diver in few-shot settings. In the full supervision set-
ting, the GSM model can learn this information by itself and
is limited by noise in the crops and the loss of other infor-
mation from the frame (e.g., the other diver in synchronized
diving; the 3 metre springboard or 10 metre platform; and
spatial information).

E6. Analysis: Visualizing Distilled 2D Pose

Although the goal of this paper is to distill pose fea-
tures for downstream tasks, this section provides prelimi-
nary qualitative results on how well distilled features mimic
their teachers and reflect the explicit 2D pose. Because the
learned VIPE* and VPD features are not designed to be
human interpretable, we use normalized 2D joint positions
(described in Section A) as the teacher instead, and we train
an ablated student without the auxiliary decoder for motion.

Figure S2 compares the teacher’s normalized 2D joint
features to the student’s distilled outputs. Visible errors in
the student’s predictions show that our distillation method
presented in this paper does not solve the explicit 2D pose
estimation problem in challenging sports data. However,
solving this explicit task is not necessarily required to im-
prove results in downstream tasks that depend on pose.

F. Additional Dataset Details

This section provides additional details about the fine-
grained sports video datasets used in the results section.

Figure skating is a new dataset that contains the jumps in
371 singles short programs. Because professional skaters
often repeat the same routine in a competitive season, all
performances from 2018 are held out for testing.

The six jump types that occur in the FSJump6 dataset
are: Axel, flip, loop, Lutz, Salchow, and toe-loop (see Ta-
ble S6). The labels are verified against the ISU’s [7] pub-
licly accessible scoring data. For the classification task, the
average label duration is 3.3 seconds and includes the poses
from before taking off and after landing.

Tennis consists of Vid2Player’s [31] swing annotations in
nine matches. For action recognition, Tennis7 has seven
swing types: forehand topspin, backhand topspin, forehand
slice, backhand slice, forehand volley, backhand volley, and
overhead. Note that the distribution of actions in tennis is
unbalanced, with forehand topspin being the most common.



Dataset Tennis7 FX35 Diving48
Score % All % Action Full 16-shot % All % Action Full 16-shot % All  Full 16-shot

VIPE* - - 91.8 67.0 - - 90.8 75.7 - 78.6 35.0
>0.1 99.4 99.2 93.4 67.5 99.7 99.5 93.9 82.9 89 81.1 43.9
>0.3 99.2 99.0 93.0 67.7 96 91 93.8 84.0 62 85.7 51.8
> 0.5 97.9 97.2 93.4 69.5 90 79 94.6 84.9 38 88.9 58.8
> 0.7 89.9 83.9 93.3 71.1 78 61 93.9 83.0 17 87.7 50.6
>0.9 1.5 1.3 91.2 65.4 17 8 93.1 79.9 <1 73.8 25.7

Table S1: Top-1 accuracy on action recognition using VI-VPD when varying the weak-pose selection threshold. For
consistency, all results are using the BiGRU (Section B1). Excluding the least confident poses improves accuracy; these poses
are most likely to be incorrect. However, setting the threshold too high also decreases accuracy if the supervision becomes
too sparse. The percent of poses in all frames (% All) and in action frames (% Action) that are retained at each threshold is
also shown. Note: Diving48 [10] only contains action frames.

Training data 4-shot 8-shot 16-shot 32-shot
Features \ Model BiGRU NNS BiGRU NNS BiGRU NNS BiGRU NNS
FSJump6

Normalized 2D joints 38.5+3.7 50.8+£6.1 60.1+45 653+£45 725+39 71.7+£39 89.7£09 79.7+138
(Ours) 2D-VPD 432+52 507+58 66.1£11 703+£37 744+£30 757+£15 908+£19 841+12
VIPE* 51.1+£30 64350 697£29 757+£36 805+35 783£26 913+£17 845+13
(Ours) VI-VPD 544+50 659+55 714+17 784+25 802+19 811+25 922+12 862+07
Tennis7
Normalized 2D joints 48.0+19 5424+34 585+3.0 570+£55 644+26 630+28 697+£26 646+23
(Ours) 2D-VPD 53.0+33 570+34 620£17 613+48 669+17 650£20 715+£24 672+15
VIPE* 614+41 624+44 658+34 656+£35 67.0+28 688+43 732+£23 70.1+2.0
(Ours) VI-VPD 639+61 624+45 655+45 661+35 711+24 684+35 763+2.0 703+1.38
FX35
Normalized 2D joints 37.6+ 12 380+19 548+26 458+12 656+09 528+14 753+£09 59.0+0.6
(Ours) 2D-VPD 512+10 474+21 700£12 549+15 827+06 639+14 888+£0.8 69.7+0.5
VIPE* 497+£07 43.0+17 625+£21 49.1£09 757+04 543+£12 81.8+05 597+13
(Ours) VI-VPD 593+19 510+1.1 73.0£06 57.1+13 849+05 654+£15 891406 70.6+0.7
Diving48
Normalized 2D joints 12.6+ 1.2 133+14 133+£12 153+0.8 255435 - 442+ 0.9 -
(Ours) 2D-VPD 27.6+26 184+24 294+12 228+14 57.6+6.5 - 76.6 = 0.9 -
VIPE* 170£16 1294+1.6 188+1.0 16.1£13 350+45 - 532+14 -
(Ours) VI-VPD 292+25 169+21 340+12 212+10 58.8+3.6 - 76.7 £ 0.8 -

Table S2: Results with NNS, under L, distance and DTW, compared to the BiGRU in the few-shot setting. NNS can
perform competitively in label-poor settings, though the results are dataset dependent. We did not evaluate NNS on Diving48
past k = 8 due to the large number of classes (48), longer average clip length, and the inference time scaling linearly with
the number of training examples.
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Figure S1: Distribution of mean estimated joint scores in each dataset. A flatter distribution with more mass to the left
indicates greater uncertainty in the estimates. The distribution of joint scores produced by the pose estimator varies by dataset
and whether the frames are part of actions or not.

Figure skating jumps
Activation threshold 0.1 02 03 04 05 06 07 08 09

Pretrained R3D [26] 233|231 | 182 166 142 128 100 74 59
Normalized 2D Joints  57.1 | 534 | 50.4 469 422 379 333 270 203

2D-VPD 63.3 | 61.5 | 587 563 552 53.7 518 492 444
VIPE* 615|593 | 581 578 56.1 520 500 446 40.0
VI-VPD 61.7 | 60.7 | 59.6 575 549 530 512 499 457

Tennis swings at 200 ms
Activation threshold 0.05 0.1 0.15 02 025 03 035 04 045

Pretrained R3D [26] 32.1 315 309|299 | 285 274 264 251 223
Normalized 2D Joints 46.8 453 444 | 437 | 43.6 43.1 41.8 40.1 377

2D-VPD 512 521 535 | 54.0 | 547 545 53.6 520 490
VIPE* 496 50.1 508 | 512|518 521 515 503 48.0
VI-VPD 556 563 578 | 58.6 | 593 598 59.7 589 56.9

Table S3: Few-shot action detection: Average precision (AP) at tloU = 0.5 with various frame-level activation thresh-
olds. These per-frame activations are produced by the BiGRU ensemble described in Section D, and consecutive activations
above the threshold are predicted as actions. In Table 4, we use a threshold of 0.2.

Dataset FSJump6 Tennis7 FX35 Diving48
Architecture \ Features VIPE* VI-VPD VIPE* VI-VPD VIPE* VI-VPD VIPE* VI-VPD

NNS (w/ DTW) [Section B2] ~ 90.6 92.7 89.1 88.6 71.8 81.2 - -
CNN [9] 93.8 96.0 91.6 93.0 87.8 934 58.8 81.3
BIiLSTM 97.7 98.1 922 934 90.9 94.3 77.9 88.2
BiLSTM (w/ attn) 97.3 97.9 90.7 92.0 88.8 93.9 76.8 87.5
BiGRU [Section B1] 96.8 97.4 91.8 93.3 90.8 94.6 78.6 88.6
BiGRU (w/ attn) 96.8 98.3 91.1 92.5 89.5 943 77.5 88.0

Table S4: Action recognition architectures: Top-1 accuracy using VIPE* and VI-VPD features in the full supervi-
sion setting. We experimented with a number of standard architectures for classifying sequences of pose features. The
CNN is based on early work on text classification with word vectors [9]. The BiLSTM is similar to the BiGRU described
in Section B1. For the BiLSTM and BiGRU with attention, we use an attention mechanism similar to [5]. Results are often
similar when comparing across architectures, showing that the improvement from VI-VPD is not reliant on the downstream
architecture. For consistency, we use the BIGRU, without attention, for the main results in the paper.



k  Notcropped Cropped Difference
8 95+£13 151+£08 +5.5
16 21.8£15 33.0=£09 +11.2
32 495+3.1 593+£24 +9.8
64 726 £1.0 756+£1.2 +3.0

Table S5: GSM [20] on Diving48 [10], with and without
cropping, in the k = 8 to £ = 64 shot settings. GSM with
subject cropping is the stronger baseline and is used in the
few-shot action recognition experiments in Section 4.1.1.

Serves are intentionally excluded from the action recogni-
tion task because they always occur at the start of points and
do not need to be classified. For swing detection, however,
serves are included.

All action recognition models receive a one second inter-
val, centered around the frame of ball contact for the swing.

Floor exercise. We use the videos, labels, and official
train/validation split from the floor exercise event of Fin-
eGym99 [19]. We focus on floor exercises (FX35) because
the data is readily tracked and because the [19] authors re-
port accuracies on this subset. Because actions are often
short, for each action, we extracted frames from 250 ms
prior to the annotated start time to the end time, and we use
these frames as the inputs to our methods and the baselines.

Diving48 [10] contains both individual and synchronized
diving. We use the standard train/validation split. For syn-
chronized diving, we track either diver as the subject and
tracks can flicker between divers due to missed detections.
Tracking is the most challenging in this dataset because of
the low resolution, motion blur, and occlusion upon enter-
ing the water. Also, because the clips are short, it is more
difficult to initialize tracking heuristics that utilize periods
of video before and after an action, where the athlete is more
static and can be more easily detected and identified.

Subject Tracking

To focus on the athletes, we introduce subject tracking to
the figure skating, floor exercises [19], and Diving48 [10]
datasets. Our annotations are created with off-the-shelf per-
son detection and tracking algorithms. First, we run a Mask
R-CNN detector with a ResNeXt-152-32x8d backbone [29]
on every frame to detect instances of people. We use heuris-
tics such as “the largest person in the frame” (e.g., in fig-
ure skating, floor exercise, and diving) and “upside down
pose” (e.g., in floor exercise and diving) to select the ath-
lete. These selections are tracked across nearby frames
with bounding box intersection-over-union, SORT [1], and
OpenCV [2] object tracking (CSRT [14]) when detections
are missed. This heuristic approach is similar to the one
taken by the authors of Vid2Player [31].

Class Count

Axel 371
Flip 179
Loop 94
Lutz 244
Salchow 61
Toe-loop 497
Total 1,446

Table S6: Distribution of action classes in FSJump6.

Class Count
Backhand slice 812
Backhand topspin 3,134
Backhand volley 140
Forehand slice 215
Forehand topspin 3,732
Forehand volley 123
Overhead 87
Total 8,243

Table S7: Distribution of action classes in Tennis7.

Example images of tracked and cropped athletes are
shown in Figure S3. We run pose estimation on the pixels
contained in and around the tracked boxes.

G. VIPE" Details

We provide details of VIPE*, which is used as the
teacher for our view-invariant VI-VPD student. VIPE* is
used because the evaluation code and documentation for Pr-
VIPE [21] is not released at the time of development. The
experiments in this section are to demonstrate that VIPE* is
a suitable substitute, based on [21]’s evaluation on coarse-
grained action recognition.

Overview. View-invariant pose embedding (VIPE) meth-
ods embed 2D joints such that different camera views of the
same pose in 3D are similar in the embedding space. VIPE*
is trained via 3D lifting to canonicalized features (w.r.t. ro-
tation and body shape). We designed VIPE* to train on mul-
tiple (publicly available) datasets with differing 3D joint se-
mantics; we use Human3.6M [6] as well as synthetic pose
data from 3DPeople [17], AMASS [15], and NBA2K [35].

Inputs. VIPE* learns view-invariant embeddings by re-
gressing 3D joint features from 2D joint pose. The 2D joint
inputs are the 13 COCO [1 1] keypoints (excluding eyes and
ears) normalized as in [21]. To obtain canonicalized 3D fea-
tures, first, we rotate the 3D pose around the vertical-axis,



aligning the torso-normal vector to the depth-axis. Then,
we normalize each joint as two unit length offsets from its
parent and from the hip (centered to 0). We also concatenate
the cosine bone angle at each 3D joint. These transforma-
tions standardize 3D poses with respect to body appearance
and camera view.

Model. VIPE* uses a similar neural network backbone
to [16, 21] and is trained with two losses:

* 3D feature reconstruction loss. We use a fully-
connected decoder that takes embeddings as input.
This decoder is discarded after training. To sup-
port multi-task training with 3D datasets with different
ground-truth joint semantics, we specialize the output
layer weights for each dataset.

* Contrastive embedding loss. We minimize the pair-
wise Lo distance between embeddings of different 2D
views of the same 3D pose (positive pairs). We also
negatively sample pairs of 2D poses, corresponding to
different 3D poses in each action sequence, and maxi-
mize their embedding distance. Two 3D poses are con-
sidered to be different if one of their joint-bone angles
differs by 45° or more.

Substitute for Pr-VIPE. We compare VIPE*’s perfor-
mance to the coarse-grained action recognition results re-
ported by [21, 33] on the Penn Action [32] dataset. Our
results suggest parity with Pr-VIPE when trained with Hu-
man3.6M only and a small improvement from extra syn-
thetic data. VIPE* has 98.2% top-1 accuracy (compared to
98.4%, the best result for Pr-VIPE [33]) when trained on the
same subjects of the Human3.6M dataset and using nearest-
neighbor search as the action recognition method (see Sec-
tion B2). VIPE* obtains 98.6% accuracy when trained with
extra synthetic 3D data. The saturated accuracies of VIPE*,
Pr-VIPE [21], and other prior work [33] on the Penn Ac-
tion dataset suggest that more challenging datasets, such as
fine-grained sports, are needed to evaluate new techniques.

For fine-grained action recognition in sports, additional
synthetic 3D data improves VIPE* (Table S8). This is espe-
cially notable on FX35 and Diving48, which contain a va-
riety of poses that are not well represented by Human3.6M.
We use VIPE*, improved with the synthetic 3D data, as the
teacher for all of our VI-VPD experiments.

VIPE* training data

Dataset Human3.6M  All  Difference
FSJump6 95.8 96.8 +1.0
Tennis7 91.9 91.8 -0.1
FX35 87.7 90.8 +3.1
Diving48 66.8 76.8 +10.0

Table S8: Effect of additional synthetic 3D data (all) for
VIPE” on fine-grained sports datasets. Top-1 accuracy
on fine-grained sports action recognition is shown. The im-
provement is largest on FX35 and Diving48, which differ
the most from the common poses in Human 3.6M [6]. We
use VIPE* trained with all of the 3D data as the teacher for
VI-VPD and the VIPE* baselines in Section 4.1. Note that
vertically augmenting VIPE* for Diving48, as described
in Section 4.1, further increases accuracy to 78.6% (over
the 76.8% shown above).
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Figure S2: Qualitative examples of distilled 2D joints. To investigate whether distillation improves the more general,
explicit 2D pose estimation problem, we visualize the output of an ablated student trained to distill 2D poses, without the
motion component. The sole learning objective in this experiment is to mimic the normalized 2D joint offsets produced by
the teacher. As seen above, the student’s output often is similar to the teacher’s, especially when the teacher performs well
(left column). The student can sometimes produce more plausible results by avoiding extreme errors by the teacher, such
as inverting left and right or when pose keypoints are jumbled (middle column). However, as the example failures in the
right column show, this student is far from perfect. Ground-truth 2D pose is not available for these datasets, making further
quantitative evaluation difficult.
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(d) Diving48. There are frequent errors and lapses in pose tracking, especially after entry into the water.

Figure S3: Examples of cropped athletes, based on tracking in the four sports datasets.
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